Temporal-mode continuous-variable 3-dimensional cluster state for
topologically-protected measurement-based quantum computation
- URL: http://arxiv.org/abs/2004.05750v2
- Date: Mon, 3 Aug 2020 08:55:13 GMT
- Title: Temporal-mode continuous-variable 3-dimensional cluster state for
topologically-protected measurement-based quantum computation
- Authors: Kosuke Fukui, Warit Asavanant, and Akira Furusawa
- Abstract summary: We propose the method to generate the large-scale 3-dimensional cluster state which is a platform for measurement-based quantum computation.
Our method combines a time-domain multiplexing approach with a divide-and-conquer approach, and has the two advantages for implementing large-scale quantum computation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Measurement-based quantum computation with continuous variables in an optical
setup shows the great promise towards implementation of large-scale quantum
computation, where the time-domain multiplexing approach enables us to generate
the large-scale cluster state used to perform measurement-based quantum
computation. To make effective use of the advantage of the time-domain
multiplexing approach, in this paper, we propose the method to generate the
large-scale 3-dimensional cluster state which is a platform for topologically
protected measurement-based quantum computation. Our method combines a
time-domain multiplexing approach with a divide-and-conquer approach, and has
the two advantages for implementing large-scale quantum computation. First, the
squeezing level for verification of the entanglement of the 3-dimensional
cluster states is experimentally feasible. The second advantage is the
robustness against analog errors derived from the finite squeezing of
continuous variables during topologically-protected measurement-based quantum
computation. Therefore, our method is a promising approach to implement
large-scale quantum computation with continuous variables.
Related papers
- A complete continuous-variable quantum computation architecture based on the 2D spatiotemporal cluster state [5.00127829918438]
Continuous repetition-based quantum computation is a promising candidate for practical, scalable, universal, and fault-tolerant quantum computation.
In this work, a complete architecture including cluster state preparation, gate implementations, and error correction is demonstrated.
arXiv Detail & Related papers (2023-12-21T14:21:33Z) - Estimating many properties of a quantum state via quantum reservoir
processing [2.5432391525687748]
We propose a general framework for constructing classical approximations of arbitrary quantum states with quantum reservoirs.
A key advantage of our method is that only a single local measurement setting is required for estimating arbitrary properties.
This estimation scheme is extendable to higher-dimensional systems and hybrid systems with non-identical local dimensions.
arXiv Detail & Related papers (2023-05-11T15:21:21Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Resource-frugal Hamiltonian eigenstate preparation via repeated quantum
phase estimation measurements [0.0]
Preparation of Hamiltonian eigenstates is essential for many applications in quantum computing.
We adopt ideas from variants of this method to implement a resource-frugal iterative scheme.
We characterise an extension involving a modification of the target Hamiltonian to increase overall efficiency.
arXiv Detail & Related papers (2022-12-01T20:07:36Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Near-term Efficient Quantum Algorithms for Entanglement Analysis [5.453850739960517]
Entanglement plays a crucial role in quantum physics and is the key resource in quantum information processing.
This work proposes three near-term efficient algorithms exploiting the hybrid quantum-classical technique to address this difficulty.
arXiv Detail & Related papers (2021-09-22T15:15:58Z) - Mitigating algorithmic errors in quantum optimization through energy
extrapolation [4.426846282723645]
We present a scalable extrapolation approach to mitigating a non-negligible error in estimates of the ground state energy.
We have verified the validity of these approaches through both numerical simulation and experiments on an IBM quantum computer.
arXiv Detail & Related papers (2021-09-16T17:39:11Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.