Estimating many properties of a quantum state via quantum reservoir
processing
- URL: http://arxiv.org/abs/2305.06878v3
- Date: Wed, 28 Feb 2024 02:03:54 GMT
- Title: Estimating many properties of a quantum state via quantum reservoir
processing
- Authors: Yinfei Li, Sanjib Ghosh, Jiangwei Shang, Qihua Xiong, Xiangdong Zhang
- Abstract summary: We propose a general framework for constructing classical approximations of arbitrary quantum states with quantum reservoirs.
A key advantage of our method is that only a single local measurement setting is required for estimating arbitrary properties.
This estimation scheme is extendable to higher-dimensional systems and hybrid systems with non-identical local dimensions.
- Score: 2.5432391525687748
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating properties of a quantum state is an indispensable task in various
applications of quantum information processing. To predict properties in the
post-processing stage, it is inherent to first perceive the quantum state with
a measurement protocol and store the information acquired. In this work, we
propose a general framework for constructing classical approximations of
arbitrary quantum states with quantum reservoirs. A key advantage of our method
is that only a single local measurement setting is required for estimating
arbitrary properties, while most of the previous methods need exponentially
increasing number of measurement settings. To estimate $M$ properties
simultaneously, the size of the classical approximation scales as $\ln M$ .
Moreover, this estimation scheme is extendable to higher-dimensional systems
and hybrid systems with non-identical local dimensions, which makes it
exceptionally generic. We support our theoretical findings with extensive
numerical simulations.
Related papers
- Group-invariant estimation of symmetric states generated by noisy quantum computers [0.0]
We analyze the density matrices of symmetric quantum states generated by a quantum processor.
We take advantage of an estimation technique that results to be equivalent to the quantum Maximum Entropy (MaxEnt) estimation.
The smart use of prior knowledge of the quantum state symmetries allows for a reduction in both, the number of measurements that need to be made on the system, and the size of the computational problem to store and process the data.
arXiv Detail & Related papers (2024-08-17T12:20:43Z) - Classification of joint quantum measurements based on entanglement cost of localization [42.72938925647165]
We propose a systematic classification of joint measurements based on entanglement cost.
We show how to numerically explore higher levels and construct generalizations to higher dimensions and multipartite settings.
arXiv Detail & Related papers (2024-08-01T18:00:01Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Quantum state inference from coarse-grained descriptions: analysis and
an application to quantum thermodynamics [101.18253437732933]
We compare the Maximum Entropy Principle method, with the recently proposed Average Assignment Map method.
Despite the fact that the assigned descriptions respect the measured constraints, the descriptions differ in scenarios that go beyond the traditional system-environment structure.
arXiv Detail & Related papers (2022-05-16T19:42:24Z) - Quantum scale estimation [0.0]
Quantum scale estimation establishes the most precise framework for the estimation of scale parameters that is allowed by the laws of quantum mechanics.
The new framework is exploited to generalise scale-invariant global thermometry, as well as to address the estimation of the lifetime of an atomic state.
On a more conceptual note, the optimal strategy is employed to construct an observable for scale parameters, an approach which may serve as a template for a more systematic search of quantum observables.
arXiv Detail & Related papers (2021-11-23T15:03:19Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Convergence of reconstructed density matrix to a pure state using
maximal entropy approach [4.084744267747294]
We propose an alternative approach to QST for the complete reconstruction of the density matrix of a quantum system in a pure state for any number of qubits.
Our goal is to provide a practical inference of a quantum system in a pure state that can find its applications in the field of quantum error mitigation on a real quantum computer.
arXiv Detail & Related papers (2021-07-02T16:58:26Z) - Experimental quantum state measurement with classical shadows [5.455606108893398]
A crucial subroutine for various quantum computing and communication algorithms is to efficiently extract different classical properties of quantum states.
We show how to project the quantum state into classical shadows and simultaneously predict $M$ different functions of a state with only $mathcalO(log M)$ measurements.
Our experiment verifies the efficacy of exploiting (derandomized) classical shadows and sheds light on efficient quantum computing with noisy intermediate-scale quantum hardware.
arXiv Detail & Related papers (2021-06-18T15:42:03Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Predicting Many Properties of a Quantum System from Very Few
Measurements [3.6990978741464895]
We present an efficient method for constructing an approximate classical description of a quantum state.
The number of measurements is independent of the system size, and saturates information-theoretic lower bounds.
We apply classical shadows to predict quantum fidelities, entanglement entropies, two-point correlation functions, expectation values of local observables, and the energy variance of many-body local Hamiltonians.
arXiv Detail & Related papers (2020-02-18T19:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.