PNN: A Novel Progressive Neural Network for Fault Classification in Rotating Machinery under Small Dataset Constraint
- URL: http://arxiv.org/abs/2503.18263v1
- Date: Mon, 24 Mar 2025 01:12:23 GMT
- Title: PNN: A Novel Progressive Neural Network for Fault Classification in Rotating Machinery under Small Dataset Constraint
- Authors: Praveen Chopra, Himanshu Kumar, Sandeep Yadav,
- Abstract summary: This research introduces a unified framework leveraging a novel progressive neural network architecture (PNN)<n>The PNN sequentially estimates the fixed-size refined features of the higher order with the help of all previously estimated features and appends them to the feature set.<n>The framework's effectiveness is validated on eight datasets, including six open-source datasets, one in-house fault simulator, and one real-world industrial dataset.
- Score: 2.7373986291574135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fault detection in rotating machinery is a complex task, particularly in small and heterogeneous dataset scenarios. Variability in sensor placement, machinery configurations, and structural differences further increase the complexity of the problem. Conventional deep learning approaches often demand large, homogeneous datasets, limiting their applicability in data-scarce industrial environments. While transfer learning and few-shot learning have shown potential, however, they are often constrained by the need for extensive fault datasets. This research introduces a unified framework leveraging a novel progressive neural network (PNN) architecture designed to address these challenges. The PNN sequentially estimates the fixed-size refined features of the higher order with the help of all previously estimated features and appends them to the feature set. This fixed-size feature output at each layer controls the complexity of the PNN and makes it suitable for effective learning from small datasets. The framework's effectiveness is validated on eight datasets, including six open-source datasets, one in-house fault simulator, and one real-world industrial dataset. The PNN achieves state-of-the-art performance in fault detection across varying dataset sizes and machinery types, highlighting superior generalization and classification capabilities.
Related papers
- SCENT: Robust Spatiotemporal Learning for Continuous Scientific Data via Scalable Conditioned Neural Fields [11.872753517172555]
We present SCENT, a novel framework for scalable and continuity-informed modeling learning.
SCENT unifies representation, reconstruction, and forecasting within a single architecture.
We validate SCENT through extensive simulations and real-world experiments, demonstrating state-of-the-art performance.
arXiv Detail & Related papers (2025-04-16T17:17:31Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - A Comparison of Deep Learning Architectures for Spacecraft Anomaly Detection [0.138120109831448]
This study aims to compare the efficacy of various deep learning architectures in detecting anomalies in spacecraft data.
The models under investigation include Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Transformer-based architectures.
arXiv Detail & Related papers (2024-03-19T16:08:27Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - Efficient Model Adaptation for Continual Learning at the Edge [15.334881190102895]
Most machine learning (ML) systems assume stationary and matching data distributions during training and deployment.
Data distributions often shift over time due to changes in environmental factors, sensor characteristics, and task-of-interest.
This paper presents theAdaptor-Reconfigurator (EAR) framework for efficient continual learning under domain shifts.
arXiv Detail & Related papers (2023-08-03T23:55:17Z) - Systematic Evaluation of Deep Learning Models for Log-based Failure Prediction [3.3810628880631226]
This paper systematically investigates the combination of log data embedding strategies and Deep Learning (DL) types for failure prediction.
To that end, we propose a modular architecture to accommodate various configurations of embedding strategies and DL-based encoders.
Using the F1 score metric, our results show that the best overall performing configuration is a CNN-based encoder with Logkey2vec.
arXiv Detail & Related papers (2023-03-13T16:04:14Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - A Survey on Impact of Transient Faults on BNN Inference Accelerators [0.9667631210393929]
Big data booming enables us to easily access and analyze the highly large data sets.
Deep learning models require significant computation power and extremely high memory accesses.
In this study, we demonstrate that the impact of soft errors on a customized deep learning algorithm might cause drastic image misclassification.
arXiv Detail & Related papers (2020-04-10T16:15:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.