Systematic Evaluation of Deep Learning Models for Log-based Failure Prediction
- URL: http://arxiv.org/abs/2303.07230v4
- Date: Mon, 24 Jun 2024 04:36:05 GMT
- Title: Systematic Evaluation of Deep Learning Models for Log-based Failure Prediction
- Authors: Fatemeh Hadadi, Joshua H. Dawes, Donghwan Shin, Domenico Bianculli, Lionel Briand,
- Abstract summary: This paper systematically investigates the combination of log data embedding strategies and Deep Learning (DL) types for failure prediction.
To that end, we propose a modular architecture to accommodate various configurations of embedding strategies and DL-based encoders.
Using the F1 score metric, our results show that the best overall performing configuration is a CNN-based encoder with Logkey2vec.
- Score: 3.3810628880631226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the increasing complexity and scope of software systems, their dependability is crucial. The analysis of log data recorded during system execution can enable engineers to automatically predict failures at run time. Several Machine Learning (ML) techniques, including traditional ML and Deep Learning (DL), have been proposed to automate such tasks. However, current empirical studies are limited in terms of covering all main DL types -- Recurrent Neural Network (RNN), Convolutional Neural network (CNN), and transformer -- as well as examining them on a wide range of diverse datasets. In this paper, we aim to address these issues by systematically investigating the combination of log data embedding strategies and DL types for failure prediction. To that end, we propose a modular architecture to accommodate various configurations of embedding strategies and DL-based encoders. To further investigate how dataset characteristics such as dataset size and failure percentage affect model accuracy, we synthesised 360 datasets, with varying characteristics, for three distinct system behavioral models, based on a systematic and automated generation approach. Using the F1 score metric, our results show that the best overall performing configuration is a CNN-based encoder with Logkey2vec. Additionally, we provide specific dataset conditions, namely a dataset size >350 or a failure percentage >7.5%, under which this configuration demonstrates high accuracy for failure prediction.
Related papers
- The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Efficient Model Adaptation for Continual Learning at the Edge [15.334881190102895]
Most machine learning (ML) systems assume stationary and matching data distributions during training and deployment.
Data distributions often shift over time due to changes in environmental factors, sensor characteristics, and task-of-interest.
This paper presents theAdaptor-Reconfigurator (EAR) framework for efficient continual learning under domain shifts.
arXiv Detail & Related papers (2023-08-03T23:55:17Z) - Feature Extraction for Machine Learning-based Intrusion Detection in IoT
Networks [6.6147550436077776]
This paper aims to discover whether Feature Reduction (FR) and Machine Learning (ML) techniques can be generalised across various datasets.
The detection accuracy of three Feature Extraction (FE) algorithms; Principal Component Analysis (PCA), Auto-encoder (AE), and Linear Discriminant Analysis (LDA) is evaluated.
arXiv Detail & Related papers (2021-08-28T23:52:18Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - An Explainable Machine Learning-based Network Intrusion Detection System
for Enabling Generalisability in Securing IoT Networks [0.0]
Machine Learning (ML)-based network intrusion detection systems bring many benefits for enhancing the security posture of an organisation.
Many systems have been designed and developed in the research community, often achieving a perfect detection rate when evaluated using certain datasets.
This paper tightens the gap by evaluating the generalisability of a common feature set to different network environments and attack types.
arXiv Detail & Related papers (2021-04-15T00:44:45Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - NASirt: AutoML based learning with instance-level complexity information [0.0]
We present NASirt, an AutoML methodology that finds high accuracy CNN architectures for spectral datasets.
Our method performs, in most cases, better than the benchmarks, achieving average accuracy as high as 97.40%.
arXiv Detail & Related papers (2020-08-26T22:21:44Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - A Survey on Impact of Transient Faults on BNN Inference Accelerators [0.9667631210393929]
Big data booming enables us to easily access and analyze the highly large data sets.
Deep learning models require significant computation power and extremely high memory accesses.
In this study, we demonstrate that the impact of soft errors on a customized deep learning algorithm might cause drastic image misclassification.
arXiv Detail & Related papers (2020-04-10T16:15:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.