Dissipative Bethe Ansatz: Exact Solutions of Quantum Many-Body Dynamics
Under Loss
- URL: http://arxiv.org/abs/2004.05955v1
- Date: Mon, 13 Apr 2020 14:12:01 GMT
- Title: Dissipative Bethe Ansatz: Exact Solutions of Quantum Many-Body Dynamics
Under Loss
- Authors: Berislav Buca, Cameron Booker, Marko Medenjak, Dieter Jaksch
- Abstract summary: We use the Bethe Ansatz technique to study dissipative systems experiencing loss.
We calculate the Liouvillian spectrum and find different relaxation rates with a novel type of dynamical dissipative phase transition.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We use the Bethe Ansatz technique to study dissipative systems experiencing
loss. The method allows us to exactly calculate the Liouvillian spectrum. This
opens the possibility of analytically calculating the dynamics of a wide range
of experimentally relevant models including cold atoms subjected to one and two
body losses, coupled cavity arrays with bosons escaping the cavity, and cavity
quantum electrodynamics. As an example of our approach we study the relaxation
properties in a boundary driven XXZ spin chain. We exactly calculate the
Liouvillian gap and find different relaxation rates with a novel type of
dynamical dissipative phase transition. This physically translates into the
formation of a stable domain wall in the easy-axis regime despite the presence
of loss. Such analytic results have previously been inaccessible for systems of
this type.
Related papers
- Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Semiclassical descriptions of dissipative dynamics of strongly interacting Bose gases in optical lattices [0.0]
We develop methods for describing real-time dynamics of dissipative Bose-Hubbard systems in a strongly interacting regime.
We numerically demonstrate that the discrete TWA approach is able to qualitatively capture the continuous quantum Zeno effect on dynamics.
arXiv Detail & Related papers (2023-07-30T08:39:06Z) - Scaling of fronts and entanglement spreading during a domain wall
melting [0.0]
We revisit the out-of-equilibrium physics arising during the unitary evolution of a one-dimensional XXZ spin chain.
In the last part of the work, we include large-scale quantum fluctuations on top of the semi-classical hydrodynamic background.
arXiv Detail & Related papers (2023-03-17T15:34:43Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits [68.8204255655161]
We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
arXiv Detail & Related papers (2021-06-09T16:21:31Z) - Statistical mechanics of one-dimensional quantum droplets [0.0]
We study the dynamical relaxation process of modulationally unstable one-dimensional quantum droplets.
We find that the instability leads to the spontaneous formation of quantum droplets featuring multiple collisions.
arXiv Detail & Related papers (2021-02-25T15:30:30Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Lie-algebraic approach to one-dimensional translationally invariant
free-fermionic dissipative systems [0.0]
We study dissipative translationally in free-fermionic theories with quadratic Liouvillians.
We derive a generic criterion for the closure of the dissipative gap.
The predicted effects can be probed in experiments with ultracold atomic and quantum-optical systems.
arXiv Detail & Related papers (2020-07-14T11:38:43Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.