Error-detected state transfer and entanglement in a superconducting
quantum network
- URL: http://arxiv.org/abs/2004.06168v1
- Date: Mon, 13 Apr 2020 19:34:37 GMT
- Title: Error-detected state transfer and entanglement in a superconducting
quantum network
- Authors: Luke D. Burkhart, James Teoh, Yaxing Zhang, Christopher J. Axline,
Luigi Frunzio, M.H. Devoret, Liang Jiang, S.M. Girvin, and R.J. Schoelkopf
- Abstract summary: Modular networks are a promising paradigm for increasingly complex quantum devices based on the ability to transfer qubits and generate entanglement between modules.
We demonstrate communication and entanglement in a superconducting network with a microwave-actuated beamsplitter transformation between two bosonic qubits.
We show several promising methods for faithful operations between modules, including novel possibilities for resource-efficient direct gates.
- Score: 1.8063563681614785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modular networks are a promising paradigm for increasingly complex quantum
devices based on the ability to transfer qubits and generate entanglement
between modules. These tasks require a low-loss, high-speed intermodule link
that enables extensible network connectivity. Satisfying these demands
simultaneously remains an outstanding goal for long-range optical quantum
networks as well as modular superconducting processors within a single
cryostat. We demonstrate communication and entanglement in a superconducting
network with a microwave-actuated beamsplitter transformation between two
bosonic qubits, which are housed in separate modules and joined by a
demountable coaxial bus resonator. We transfer a qubit in a multi-photon
encoding and track photon loss events to improve the fidelity, making it as
high as in a single-photon encoding. Furthermore, generating entanglement with
two-photon interference and postselection against loss errors produces a Bell
state with success probability 79% and fidelity 0.94, halving the error
obtained with a single photon. These capabilities demonstrate several promising
methods for faithful operations between modules, including novel possibilities
for resource-efficient direct gates.
Related papers
- Deterministic generation of frequency-bin-encoded microwave photons [2.696404891373769]
We experimentally demonstrate a frequency-bin encoding method of microwave photonic modes using superconducting circuits.
We deterministically encode the quantum information from a superconducting qubit by simultaneously emitting its information into two photonic modes at different frequencies.
The frequency-bin-encoded photonic modes can be used, at the receiver processor, to detect the occurrence of photon loss.
arXiv Detail & Related papers (2024-10-30T16:53:01Z) - Quantum State Transfer via a Multimode Resonator [4.324470586239192]
Large-scale fault-tolerant superconducting quantum computation needs rapid quantum communication.
We propose a formalism for quantum state transfer using coupling strengths comparable to the channel's free spectral range.
arXiv Detail & Related papers (2024-06-30T12:44:44Z) - A Thin Film Lithium Niobate Near-Infrared Platform for Multiplexing Quantum Nodes [0.0]
Quantum networks will require quantum nodes consisting of many memory qubits.
This in turn will require strategies to multiplex memories and overcome the inhomogeneous distribution of their transition frequencies.
In this work, we realize a VNIR thin-film lithium niobate (TFLN) integrated photonics platform with the key components to meet these requirements.
arXiv Detail & Related papers (2024-05-07T00:13:46Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Routing Single Photons from a Trapped Ion Using a Photonic Integrated
Circuit [0.0]
Future quantum networks based on trapped ions will require a scalable way to route photons between different nodes.
We demonstrate the routing of single photons from a trapped ion using a photonic integrated circuit.
arXiv Detail & Related papers (2022-03-15T16:42:39Z) - Storage and analysis of light-matter entanglement in a fibre-integrated
system [48.7576911714538]
We demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength.
The storage device is based on a fiber-pigtailed laser written waveguide in a rare-earth doped solid and allows an all-fiber stable adressing of the memory.
Our results feature orders of magnitude advances in terms of storage time and efficiency for integrated storage of light-matter entanglement, and constitute a significant step forward towards quantum networks using integrated devices.
arXiv Detail & Related papers (2022-01-10T14:28:04Z) - Realizing all-to-all couplings among detachable quantum modules using a
microwave quantum state router [1.2402408527122377]
We present a microwave quantum state router, centered on Josephson-junction based three-wave mixing, that realizes all-to-all couplings among four detachable quantum modules.
We demonstrate coherent exchange among all four communication modes, with an average full-iSWAP time of 764ns and average inferred inter-module exchange fidelity of 0.969, limited by mode coherence.
Our router-module architecture serves as a prototype of modular quantum computer that has great potential for enabling flexible, demountable, large-scale quantum networks of superconducting qubits and cavities.
arXiv Detail & Related papers (2021-09-14T17:41:01Z) - Interleaving: Modular architectures for fault-tolerant photonic quantum
computing [50.591267188664666]
Photonic fusion-based quantum computing (FBQC) uses low-loss photonic delays.
We present a modular architecture for FBQC in which these components are combined to form "interleaving modules"
Exploiting the multiplicative power of delays, each module can add thousands of physical qubits to the computational Hilbert space.
arXiv Detail & Related papers (2021-03-15T18:00:06Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.