Routing Single Photons from a Trapped Ion Using a Photonic Integrated
Circuit
- URL: http://arxiv.org/abs/2203.08048v2
- Date: Wed, 16 Mar 2022 07:57:04 GMT
- Title: Routing Single Photons from a Trapped Ion Using a Photonic Integrated
Circuit
- Authors: Uday Saha, James D. Siverns, John Hannegan, Mihika Prabhu, Qudsia
Quraishi, Dirk Englund and Edo Waks
- Abstract summary: Future quantum networks based on trapped ions will require a scalable way to route photons between different nodes.
We demonstrate the routing of single photons from a trapped ion using a photonic integrated circuit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trapped ions are promising candidates for nodes of a scalable quantum network
due to their long-lived qubit coherence times and high-fidelity single and
two-qubit gates. Future quantum networks based on trapped ions will require a
scalable way to route photons between different nodes. Photonic integrated
circuits from fabrication foundries provide a compact solution to this problem.
However, these circuits typically operate at telecommunication wavelengths
which are incompatible with the strong dipole emissions of trapped ions. In
this work, we demonstrate the routing of single photons from a trapped ion
using a photonic integrated circuit. We employ quantum frequency conversion to
match the emission of the ion to the operating wavelength of a
foundry-fabricated silicon nitride photonic integrated circuit, achieving a
total transmission of 31$\pm$0.9% through the device. Using programmable phase
shifters, we switch the single photons between the output channels of the
circuit and also demonstrate a 50/50 beam splitting condition. These results
constitute an important step towards programmable routing and entanglement
distribution in large-scale quantum networks and distributed quantum computers.
Related papers
- All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Low noise quantum frequency conversion of photons from a trapped barium
ion to the telecom O-band [0.0]
Trapped ions are one of the leading candidates for scalable and long-distance quantum networks.
One method for creating ion-photon entanglement is to exploit optically transitions from the P_(1/2) to S_(1/2) levels.
We use a two-stage quantum frequency conversion scheme to achieve a frequency shift of 375.4 THz between the input visible photon and the output telecom photon.
arXiv Detail & Related papers (2023-05-02T05:08:10Z) - On-chip Hong-Ou-Mandel interference from separate quantum dot emitters
in an integrated circuit [0.3096919150448224]
We show a fully monolithic GaAs circuit combing two frequency-matched quantum dot single-photon sources interconnected with a low-loss on-chip beamsplitter connected via single-mode ridge waveguides.
This device enabled us to perform a two-photon interference experiment on-chip with visibility reaching 66%, limited by the coherence of the emitters.
arXiv Detail & Related papers (2023-01-04T17:03:04Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - On-Demand Directional Microwave Photon Emission Using Waveguide Quantum
Electrodynamics [38.42250061908039]
We demonstrate high-fidelity, on-demand, directional, microwave photon emission.
We do this using an artificial molecule comprising two superconducting qubits strongly coupled to a bidirectional waveguide.
This circuit will also be capable of photon absorption, making it suitable for building interconnects within quantum networks.
arXiv Detail & Related papers (2022-03-02T21:45:00Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z) - Single photon emission from individual nanophotonic-integrated colloidal
quantum dots [45.82374977939355]
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms.
We report on integrating individual colloidal core-shell quantum dots into a nanophotonic network that allows for excitation and efficient collection of single-photons via separate waveguide channels.
arXiv Detail & Related papers (2021-04-23T22:14:17Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Improving entanglement generation rates in trapped ion quantum networks
using nondestructive photon measurement and storage [0.0]
We propose a hybrid networking architecture designed to improve entanglement rates in quantum networks based on trapped ions.
We show this proposed quantum network can generate remote entanglement rates up to a factor of 100 larger than that of an equivalent homogeneous network at both near-IR and C-band wavelengths for distances up to 50 km.
arXiv Detail & Related papers (2021-01-11T23:24:26Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - Resonance fluorescence from waveguide-coupled strain-localized
two-dimensional quantum emitters [0.0]
We show a scalable approach using a silicon nitride photonic waveguide to strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode.
Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
arXiv Detail & Related papers (2020-02-18T15:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.