論文の概要: Towards Robust Classification with Image Quality Assessment
- arxiv url: http://arxiv.org/abs/2004.06288v1
- Date: Tue, 14 Apr 2020 03:27:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 08:56:30.737926
- Title: Towards Robust Classification with Image Quality Assessment
- Title(参考訳): 画像品質評価によるロバスト分類に向けて
- Authors: Yeli Feng, Yiyu Cai
- Abstract要約: ディープ畳み込みニューラルネットワーク(DCNN)は、敵対的な例に対して脆弱であり、知覚品質や画像の取得条件に敏感である。
本稿では,敵対的操作と画像品質の関連性について検討し,保護機構を提案する。
本手法は,DCCNを誘導する入力画像を検出するために,画像品質評価と知識蒸留を組み合わせる。
- 参考スコア(独自算出の注目度): 0.9213700601337386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have shown that deep convolutional neural networks (DCNN) are
vulnerable to adversarial examples and sensitive to perceptual quality as well
as the acquisition condition of images. These findings raise a big concern for
the adoption of DCNN-based applications for critical tasks. In the literature,
various defense strategies have been introduced to increase the robustness of
DCNN, including re-training an entire model with benign noise injection,
adversarial examples, or adding extra layers. In this paper, we investigate the
connection between adversarial manipulation and image quality, subsequently
propose a protective mechanism that doesnt require re-training a DCNN. Our
method combines image quality assessment with knowledge distillation to detect
input images that would trigger a DCCN to produce egregiously wrong results.
Using the ResNet model trained on ImageNet as an example, we demonstrate that
the detector can effectively identify poor quality and adversarial images.
- Abstract(参考訳): 近年の研究では、ディープ畳み込みニューラルネットワーク(DCNN)は、敵対的な例に対して脆弱であり、知覚品質や画像の取得条件に敏感であることが示されている。
これらの発見は、重要なタスクに対するDCNNベースのアプリケーションの採用に対する大きな懸念を引き起こします。
文献では,dcnnのロバスト性を高めるために,良質なノイズインジェクションによるモデル全体の再トレーニング,逆向きの例,追加レイヤの追加など,様々な防御戦略が紹介されている。
本稿では,逆操作と画像品質の関連性を検討した後,DCNNの再訓練を必要としない保護機構を提案する。
本手法では, 画像品質評価と知識蒸留を組み合わせることで, dccnをトリガーとする入力画像の検出を行う。
imagenet でトレーニングされた resnet モデルを用いて,検出器が品質の悪い画像や敵対的な画像を効果的に識別できることを実証する。
関連論文リスト
- DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
拡散先行型IQA(DP-IQA)と呼ばれる新しいIQA法を提案する。
トレーニング済みの安定拡散をバックボーンとして使用し、復調するU-Netから多レベル特徴を抽出し、それらをデコードして画質スコアを推定する。
上記のモデルの知識をCNNベースの学生モデルに抽出し、適用性を高めるためにパラメータを大幅に削減する。
論文 参考訳(メタデータ) (2024-05-30T12:32:35Z) - Causal Perception Inspired Representation Learning for Trustworthy Image Quality Assessment [2.290956583394892]
我々は、因果知覚にインスパイアされた表現学習(CPRL)を通して信頼できるIQAモデルを構築することを提案する。
CPRLは主観的品質ラベルの因果関係として機能し、それは知覚できない逆境の摂動に不変である。
4つのベンチマークデータベース上での実験により,提案手法は,最先端の敵防衛法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-04-30T13:55:30Z) - Defending Spiking Neural Networks against Adversarial Attacks through Image Purification [20.492531851480784]
Spiking Neural Networks(SNN)は、神経科学と機械学習のギャップを埋めることを目的としている。
SNNは畳み込みニューラルネットワークのような敵の攻撃に弱い。
本稿では,SNNの堅牢性を高めるための生物学的にインスパイアされた手法を提案する。
論文 参考訳(メタデータ) (2024-04-26T00:57:06Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
本稿では,ロバスト検出器 (RobustDet) を提案する。
本モデルは, クリーン画像の検出能力を維持しながら, 傾きを効果的に解き, 検出堅牢性を著しく向上させる。
論文 参考訳(メタデータ) (2022-07-13T13:59:59Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - (ASNA) An Attention-based Siamese-Difference Neural Network with
Surrogate Ranking Loss function for Perceptual Image Quality Assessment [0.0]
画像復元と拡張のための逆訓練フレームワークを利用する深層畳み込みニューラルネットワーク(dcnn)は、処理された画像のシャープさを大幅に改善した。
イメージの知覚品質とよく一致したパフォーマンスを反映した定量的指標を開発する必要がある。
本稿では,従来のSiameseネットワークの拡張アーキテクチャを用いた畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-05-06T09:04:21Z) - DeepCert: Verification of Contextually Relevant Robustness for Neural
Network Image Classifiers [16.893762648621266]
我々はディープニューラルネットワーク(DNN)画像分類器の頑健さを文脈的に関連する摂動に検証するためのツール支援のDeepCertを紹介する。
論文 参考訳(メタデータ) (2021-03-02T10:41:16Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
ディープニューラルネットワーク(DNN)は、敵対的な例やその他のデータ摂動に対して脆弱である。
GraNは、どのDNNにも容易に適応できる時間およびパラメータ効率の手法である。
GraNは多くの問題セットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-04-20T10:09:27Z) - Adversarial Attack on Deep Product Quantization Network for Image
Retrieval [74.85736968193879]
近年,高速画像検索においてDPQN (Deep Product Quantization Network) が注目されている。
近年の研究では、ディープニューラルネットワーク(DNN)は、小さく、悪意のある設計の摂動によって入力に弱いことが示されている。
本稿では,製品量子化に基づく検索システムに対して,製品量子化逆生成(PQ-AG)を提案する。
論文 参考訳(メタデータ) (2020-02-26T09:25:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。