論文の概要: A Causal Framework for Aligning Image Quality Metrics and Deep Neural Network Robustness
- arxiv url: http://arxiv.org/abs/2503.02797v1
- Date: Tue, 04 Mar 2025 17:15:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:23:53.759022
- Title: A Causal Framework for Aligning Image Quality Metrics and Deep Neural Network Robustness
- Title(参考訳): 画像品質指標とディープニューラルネットワークロバストネスの調整のための因果的枠組み
- Authors: Nathan Drenkow, Mathias Unberath,
- Abstract要約: ディープニューラルネットワーク(DNN)の性能に画像品質が重要な役割を果たす
大規模なデータセットは、しばしば幅広い条件下で画像を含む。
DNNの性能と強く相関する画像品質指標を提案する。
- 参考スコア(独自算出の注目度): 7.879496487902938
- License:
- Abstract: Image quality plays an important role in the performance of deep neural networks (DNNs) and DNNs have been widely shown to exhibit sensitivity to changes in imaging conditions. Large-scale datasets often contain images under a wide range of conditions prompting a need to quantify and understand their underlying quality distribution in order to better characterize DNN performance and robustness. Aligning the sensitivities of image quality metrics and DNNs ensures that estimates of quality can act as proxies for image/dataset difficulty independent of the task models trained/evaluated on the data. Conventional image quality assessment (IQA) seeks to measure and align quality relative to human perceptual judgments, but here we seek a quality measure that is not only sensitive to imaging conditions but also well-aligned with DNN sensitivities. We first ask whether conventional IQA metrics are also informative of DNN performance. In order to answer this question, we reframe IQA from a causal perspective and examine conditions under which quality metrics are predictive of DNN performance. We show theoretically and empirically that current IQA metrics are weak predictors of DNN performance in the context of classification. We then use our causal framework to provide an alternative formulation and a new image quality metric that is more strongly correlated with DNN performance and can act as a prior on performance without training new task models. Our approach provides a means to directly estimate the quality distribution of large-scale image datasets towards characterizing the relationship between dataset composition and DNN performance.
- Abstract(参考訳): 画像品質はディープニューラルネットワーク(DNN)の性能において重要な役割を担い、DNNは画像条件の変化に対する感受性を示すことが広く示されている。
大規模なデータセットには、DNNのパフォーマンスとロバスト性をよりよく特徴付けるために、その基盤となる品質分布を定量化し、理解する必要が生じる。
画像品質メトリクスとDNNの感度を調整することで、データに基づいてトレーニング/評価されたタスクモデルとは独立して、画質の見積が画像/データセットの難しさのプロキシとして機能することを保証する。
従来の画像品質評価(IQA)は,人間の知覚的判断に比較して品質を測定し,調整することを目的としている。
まず,従来のIQA測定値がDNNの性能に有益かどうかを問う。
この疑問に答えるために、我々は因果的観点からIQAを再構成し、品質指標がDNNのパフォーマンスを予測する条件を検討する。
我々は,現在のIQA指標が分類の文脈においてDNN性能の弱い予測因子であることを理論的,実証的に示す。
次に、我々の因果的フレームワークを用いて、代替の定式化と、DNNのパフォーマンスとより強く相関し、新しいタスクモデルを訓練することなく、パフォーマンスの先行として機能する画像品質指標を提供する。
提案手法は,大規模画像データセットの品質分布を直接推定し,データセット構成とDNN性能の関係を特徴づける手段を提供する。
関連論文リスト
- Descriptive Image Quality Assessment in the Wild [25.503311093471076]
VLMに基づく画像品質評価(IQA)は、画像品質を言語的に記述し、人間の表現に合わせることを目指している。
野生における画像品質評価(DepictQA-Wild)について紹介する。
本手法は,評価タスクと比較タスク,簡潔かつ詳細な応答,完全参照,非参照シナリオを含む多機能IQAタスクパラダイムを含む。
論文 参考訳(メタデータ) (2024-05-29T07:49:15Z) - Large Multi-modality Model Assisted AI-Generated Image Quality Assessment [53.182136445844904]
本稿では,AI生成画像品質評価モデル(MA-AGIQA)を提案する。
セマンティックインフォームドガイダンスを使用して意味情報を感知し、慎重に設計されたテキストプロンプトを通してセマンティックベクターを抽出する。
最先端のパフォーマンスを実現し、AI生成画像の品質を評価する上で優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-04-27T02:40:36Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet Pre-trained Deep Neural Network (DNN)は、効果的な画像品質評価(IQA)モデルを構築するための顕著な転送性を示す。
我々は,事前学習DNN機能のみに基づく新しいフル参照IQA(FR-IQA)モデルを開発した。
5つの標準IQAデータセット上で,提案した品質モデルの優位性を示すため,包括的実験を行った。
論文 参考訳(メタデータ) (2022-11-09T14:57:27Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
本稿では,CNNバックボーンとトランスフォーマーエンコーダを用いて特徴抽出を行うIQAフレームワークを提案する。
提案するフレームワークはFRモードとNRモードの両方と互換性があり、共同トレーニング方式が可能である。
論文 参考訳(メタデータ) (2021-12-01T13:23:00Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - A Decoupled Uncertainty Model for MRI Segmentation Quality Estimation [4.104181348044472]
タスクと異なるk空間アーティファクトに関連する不確実性のソースを分離する新しいCNNアーキテクチャを提案する。
課題の観点から,我々の不確実性予測はMRIの画質をよりよく推定できることを示す。
論文 参考訳(メタデータ) (2021-09-06T12:54:44Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
本稿では,高品質(本社)画像再構成のために,異なる状態の情報をどのように組み合わせるべきかを学習するディープインターリーブドネットワーク(DIN)を提案する。
本稿では,各インターリーブノードにアタッチメントされた非対称なコアテンション(AsyCA)を提案し,その特性依存性をモデル化する。
提案したDINはエンドツーエンドで訓練でき、様々な画像復元タスクに適用できる。
論文 参考訳(メタデータ) (2020-10-29T15:32:00Z) - Towards Robust Classification with Image Quality Assessment [0.9213700601337386]
ディープ畳み込みニューラルネットワーク(DCNN)は、敵対的な例に対して脆弱であり、知覚品質や画像の取得条件に敏感である。
本稿では,敵対的操作と画像品質の関連性について検討し,保護機構を提案する。
本手法は,DCCNを誘導する入力画像を検出するために,画像品質評価と知識蒸留を組み合わせる。
論文 参考訳(メタデータ) (2020-04-14T03:27:35Z) - MetaIQA: Deep Meta-learning for No-Reference Image Quality Assessment [73.55944459902041]
本稿では,深層メタラーニングに基づく非参照IQA尺度を提案する。
まず、様々な歪みに対してNR-IQAタスクを収集する。
次にメタラーニングを用いて、多彩な歪みによって共有される事前知識を学習する。
大規模な実験により、提案された計量は最先端の技術を大きなマージンで上回ることを示した。
論文 参考訳(メタデータ) (2020-04-11T23:36:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。