論文の概要: Few-Shot Single-View 3-D Object Reconstruction with Compositional Priors
- arxiv url: http://arxiv.org/abs/2004.06302v2
- Date: Sun, 3 May 2020 01:21:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 09:05:46.585020
- Title: Few-Shot Single-View 3-D Object Reconstruction with Compositional Priors
- Title(参考訳): 合成前処理を用いた単眼3次元物体再構成
- Authors: Mateusz Michalkiewicz, Sarah Parisot, Stavros Tsogkas, Mahsa
Baktashmotlagh, Anders Eriksson, Eugene Belilovsky
- Abstract要約: 複雑なエンコーダ・デコーダアーキテクチャは、標準ベンチマークにおいて、最寄りのベースラインと同様に動作することを示す。
本稿では,3次元再構成モデルに事前クラスを効率的に統合する3つの手法を提案する。
- 参考スコア(独自算出の注目度): 30.262308825799167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The impressive performance of deep convolutional neural networks in
single-view 3D reconstruction suggests that these models perform non-trivial
reasoning about the 3D structure of the output space. However, recent work has
challenged this belief, showing that complex encoder-decoder architectures
perform similarly to nearest-neighbor baselines or simple linear decoder models
that exploit large amounts of per category data in standard benchmarks. On the
other hand settings where 3D shape must be inferred for new categories with few
examples are more natural and require models that generalize about shapes. In
this work we demonstrate experimentally that naive baselines do not apply when
the goal is to learn to reconstruct novel objects using very few examples, and
that in a \emph{few-shot} learning setting, the network must learn concepts
that can be applied to new categories, avoiding rote memorization. To address
deficiencies in existing approaches to this problem, we propose three
approaches that efficiently integrate a class prior into a 3D reconstruction
model, allowing to account for intra-class variability and imposing an implicit
compositional structure that the model should learn. Experiments on the popular
ShapeNet database demonstrate that our method significantly outperform existing
baselines on this task in the few-shot setting.
- Abstract(参考訳): シングルビュー3次元再構成における深部畳み込みニューラルネットワークの性能は、これらのモデルが出力空間の3次元構造に関する非自明な推論を行うことを示している。
しかし、近年の研究では、複雑なエンコーダ-デコーダアーキテクチャが、標準ベンチマークでカテゴリ毎の大量のデータを利用する、最寄りのベースラインや単純な線形デコーダモデルと同様に機能することを示し、この信念に異議を唱えている。
一方、新しいカテゴリでは3次元形状を推論しなければならないが、いくつかの例はより自然であり、形状を一般化するモデルを必要とする。
本研究は,ごく少数の例を用いて新規オブジェクトの再構築を目標とする場合に,本研究では本手法が適用されないことを示すとともに,新たなカテゴリに適用可能な概念をネットワークで学習する必要があることを実証した。
そこで本研究では,3次元再構成モデルに先行するクラスを効率的に統合し,クラス内変動を考慮し,モデルが学習すべき暗黙的な構成構造を付与する3つのアプローチを提案する。
人気のShapeNetデータベースの実験では、この手法は、このタスクの既存のベースラインを数ショット設定で大幅に上回っている。
関連論文リスト
- Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
シングルビュー3Dメッシュ再構成は、シングルビューRGB画像から3D形状を復元することを目的とした、基本的なコンピュータビジョンタスクである。
本稿では,一視点3Dメッシュ再構成に取り組み,未知のカテゴリのモデル一般化について検討する。
我々は、再構築におけるカテゴリ境界を断ち切るために、エンドツーエンドの2段階ネットワークであるGenMeshを提案する。
論文 参考訳(メタデータ) (2022-08-04T14:13:35Z) - Few-shot Single-view 3D Reconstruction with Memory Prior Contrastive
Network [18.000566656946475]
数ショット学習に基づく新しいカテゴリーの3次元再構成が現実の応用にアピールしている。
本稿では,記憶優先コントラストネットワーク (MPCN) を提案する。
論文 参考訳(メタデータ) (2022-07-30T10:49:39Z) - Stereo Neural Vernier Caliper [57.187088191829886]
学習に基づくステレオ3Dオブジェクト検出のための新しいオブジェクト中心フレームワークを提案する。
初期3次元立方体推定値から改良された更新を予測する方法の問題に対処する。
提案手法は,KITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2022-03-21T14:36:07Z) - Learning Compositional Shape Priors for Few-Shot 3D Reconstruction [36.40776735291117]
複雑なエンコーダ・デコーダアーキテクチャが,カテゴリごとの大量のデータを利用することを示す。
データから直接クラス固有のグローバルな形状を学習する3つの方法を提案する。
人気のShapeNetデータセットの実験から,本手法はゼロショットベースラインを40%以上上回る性能を示した。
論文 参考訳(メタデータ) (2021-06-11T14:55:49Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
オブジェクトインスタンスの大規模なコレクションの複数のビューからモデルを学ぶことに重点を置いています。
再構成を大幅に改善するワープコンディショニングレイ埋め込み(WCR)と呼ばれる新しいニューラルネットワーク設計を提案する。
本評価は,既存のベンチマークを用いた複数の深部単眼再構成ベースラインに対する性能改善を示す。
論文 参考訳(メタデータ) (2021-03-30T17:57:01Z) - Learning monocular 3D reconstruction of articulated categories from
motion [39.811816510186475]
ビデオの自己スーパービジョンは、動きに基づくサイクルロスによる連続した3次元再構成の一貫性を強要する。
少数の局所的学習可能なハンドルの変位を介して3D表面を制御する3Dテンプレート変形の解釈可能なモデルを紹介します。
多様な形状, 視点, テクスチャを具体化して, 複数の対象カテゴリーのテクスチャを再現する。
論文 参考訳(メタデータ) (2021-03-30T13:50:27Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z) - Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from
a Single RGB Image [102.44347847154867]
プリミティブの集合として3次元オブジェクトの幾何を共同で復元できる新しい定式化を提案する。
我々のモデルは、プリミティブのバイナリツリーの形で、様々なオブジェクトの高レベルな構造的分解を復元する。
ShapeNet と D-FAUST のデータセットを用いた実験により,部品の組織化を考慮すれば3次元形状の推論が容易になることが示された。
論文 参考訳(メタデータ) (2020-04-02T17:58:05Z) - Convolutional Occupancy Networks [88.48287716452002]
本稿では,オブジェクトと3Dシーンの詳細な再構築のための,より柔軟な暗黙的表現である畳み込み機能ネットワークを提案する。
畳み込みエンコーダと暗黙の占有デコーダを組み合わせることで、帰納的バイアスが組み込まれ、3次元空間における構造的推論が可能となる。
実験により,本手法は単一物体の微細な3次元再構成,大規模屋内シーンへのスケール,合成データから実データへの一般化を可能にした。
論文 参考訳(メタデータ) (2020-03-10T10:17:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。