論文の概要: Stereo Neural Vernier Caliper
- arxiv url: http://arxiv.org/abs/2203.11018v1
- Date: Mon, 21 Mar 2022 14:36:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-22 20:55:30.776678
- Title: Stereo Neural Vernier Caliper
- Title(参考訳): ステレオニューラルバーニアキャリパ
- Authors: Shichao Li, Zechun Liu, Zhiqiang Shen, Kwang-Ting Cheng
- Abstract要約: 学習に基づくステレオ3Dオブジェクト検出のための新しいオブジェクト中心フレームワークを提案する。
初期3次元立方体推定値から改良された更新を予測する方法の問題に対処する。
提案手法は,KITTIベンチマークの最先端性能を実現する。
- 参考スコア(独自算出の注目度): 57.187088191829886
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new object-centric framework for learning-based stereo 3D object
detection. Previous studies build scene-centric representations that do not
consider the significant variation among outdoor instances and thus lack the
flexibility and functionalities that an instance-level model can offer. We
build such an instance-level model by formulating and tackling a local update
problem, i.e., how to predict a refined update given an initial 3D cuboid
guess. We demonstrate how solving this problem can complement scene-centric
approaches in (i) building a coarse-to-fine multi-resolution system, (ii)
performing model-agnostic object location refinement, and (iii) conducting
stereo 3D tracking-by-detection. Extensive experiments demonstrate the
effectiveness of our approach, which achieves state-of-the-art performance on
the KITTI benchmark. Code and pre-trained models are available at
https://github.com/Nicholasli1995/SNVC.
- Abstract(参考訳): 学習に基づくステレオ3Dオブジェクト検出のための新しいオブジェクト中心フレームワークを提案する。
従来の研究では、屋外インスタンスの顕著な変動を考慮せず、インスタンスレベルのモデルが提供する柔軟性や機能に欠けるシーン中心の表現を構築していた。
このようなインスタンスレベルのモデルを構築し、ローカル更新問題、すなわち初期の3d立方体推測に基づいて洗練された更新を予測する方法を定式化し、取り組みます。
この問題の解決がシーン中心のアプローチをどのように補完するかを実証する。
(i)粗大から細かなマルチレゾリューションシステムの構築
(ii)モデル非依存な物体の位置調整を行うこと、及び
三 ステレオ3D追跡検出を行うこと。
KITTIベンチマークで最先端性能を実現するため,提案手法の有効性を実証した。
コードと事前訓練されたモデルはhttps://github.com/Nicholasli1995/SNVC.comで入手できる。
関連論文リスト
- MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
我々は動的シーンから時間ステップごとの幾何を直接推定する新しい幾何学的アプローチであるMotion DUSt3R(MonST3R)を提案する。
各タイムステップのポイントマップを単純に推定することで、静的シーンにのみ使用されるDUST3Rの表現を動的シーンに効果的に適応させることができる。
我々は、問題を微調整タスクとしてポーズし、いくつかの適切なデータセットを特定し、この制限されたデータ上でモデルを戦略的に訓練することで、驚くほどモデルを動的に扱えることを示す。
論文 参考訳(メタデータ) (2024-10-04T18:00:07Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
クラス増分学習(class-incremental learning)は、モデルが限られたデータに基づいて漸進的にトレーニングされている場合、破滅的な忘れの問題を軽減することを目的としている。
冗長特徴除去器(RFE)と空間ノイズ補償器(SNC)の2つの新しいコンポーネントを紹介する。
既存の3次元データセットの不均衡を考慮し、3次元FSCILモデルのより微妙な評価を提供する新しい評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-28T14:52:07Z) - FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects [55.77542145604758]
FoundationPoseは、6Dオブジェクトのポーズ推定と追跡のための統合基盤モデルである。
我々のアプローチは、微調整なしで、テスト時に新しいオブジェクトに即座に適用できる。
論文 参考訳(メタデータ) (2023-12-13T18:28:09Z) - Shape Anchor Guided Holistic Indoor Scene Understanding [9.463220988312218]
本研究では, 室内環境の堅牢な理解のための形状アンカー案内学習戦略(AncLearn)を提案する。
AncLearnは、インスタンス表面を動的に(i)アンミックスノイズとターゲット関連の機能に適合するアンカーを生成し、検出段階で信頼性の高い提案を提供する。
我々は,高品質なセマンティックシーンモデルを生成するために,AncLearnを再構成検出学習システム(AncRec)に組み込む。
論文 参考訳(メタデータ) (2023-09-20T08:30:20Z) - Object DGCNN: 3D Object Detection using Dynamic Graphs [32.090268859180334]
3Dオブジェクト検出は、複雑なトレーニングとテストパイプラインを伴うことが多い。
近年,非最大抑圧型2次元物体検出モデルに着想を得て,点雲上の3次元物体検出アーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-10-13T17:59:38Z) - Learning Compositional Shape Priors for Few-Shot 3D Reconstruction [36.40776735291117]
複雑なエンコーダ・デコーダアーキテクチャが,カテゴリごとの大量のデータを利用することを示す。
データから直接クラス固有のグローバルな形状を学習する3つの方法を提案する。
人気のShapeNetデータセットの実験から,本手法はゼロショットベースラインを40%以上上回る性能を示した。
論文 参考訳(メタデータ) (2021-06-11T14:55:49Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z) - SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection [9.924083358178239]
本稿では,3次元物体検出におけるコンテキストモデリングのための2種類の自己注意法を提案する。
まず,現状のbev,voxel,ポイントベース検出器にペアワイズ自着機構を組み込む。
次に,ランダムにサンプリングされた位置の変形を学習することにより,最も代表的な特徴のサブセットをサンプリングするセルフアテンション変種を提案する。
論文 参考訳(メタデータ) (2021-01-07T18:30:32Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
動的情報モデリングを用いた新しい3次元オブジェクト検出フレームワークを提案する。
粗い予測は、ボクセルベースの領域提案ネットワークを介して第1段階で生成される。
大規模なnuScenes 3D検出ベンチマークで実験を行った。
論文 参考訳(メタデータ) (2020-07-16T18:27:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。