論文の概要: WQT and DG-YOLO: towards domain generalization in underwater object
detection
- arxiv url: http://arxiv.org/abs/2004.06333v1
- Date: Tue, 14 Apr 2020 07:36:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 09:50:50.817599
- Title: WQT and DG-YOLO: towards domain generalization in underwater object
detection
- Title(参考訳): 水中物体検出における領域一般化に向けたWQTとDG-YOLO
- Authors: Hong Liu, Pinhao Song, Runwei Ding
- Abstract要約: 本論文は,水質に制限のある小型水中データセットを用いたGUODの構築を目的とする。
まず,データ拡張手法であるWater Quality Transfer (WQT)を提案する。
次に、WQTが生成したデータから意味情報をマイニングするために、YOLOv3, DIM, IRMの3つの部分からなるDG-YOLOを提案する。
- 参考スコア(独自算出の注目度): 7.304840097609765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A General Underwater Object Detector (GUOD) should perform well on most of
underwater circumstances. However, with limited underwater dataset,
conventional object detection methods suffer from domain shift severely. This
paper aims to build a GUOD with small underwater dataset with limited types of
water quality. First, we propose a data augmentation method Water Quality
Transfer (WQT) to increase domain diversity of the original small dataset.
Second, for mining the semantic information from data generated by WQT, DG-YOLO
is proposed, which consists of three parts: YOLOv3, DIM and IRM penalty.
Finally, experiments on original and synthetic URPC2019 dataset prove that
WQT+DG-YOLO achieves promising performance of domain generalization in
underwater object detection.
- Abstract(参考訳): 一般水中物体検出装置(GUOD)は,ほとんどの水中環境において良好に機能する。
しかし、水中データセットが限られているため、従来の物体検出手法はドメインシフトに苦しむ。
本論文は,水質に制限のある小型水中データセットを用いたGUODの構築を目的とする。
まず,データ拡張手法であるWater Quality Transfer (WQT)を提案する。
次に、WQTが生成したデータから意味情報をマイニングするために、YOLOv3, DIM, IRMの3つの部分からなるDG-YOLOを提案する。
最後に,WQT+DG-YOLOが水中物体検出において有望な領域一般化を実現することを示す。
関連論文リスト
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation [65.01601309903971]
無人水中車両(UUV)の6次元ポーズ推定のための周波数認識フロー支援フレームワークであるFAFAを紹介する。
我々のフレームワークは、3DモデルとRGB画像のみに依存しており、実際のポーズアノテーションや奥行きのような非モダリティデータの必要性を軽減しています。
本研究では,一般的な水中オブジェクトポーズベンチマークにおけるFAFAの有効性を評価し,最先端手法と比較して顕著な性能向上を示した。
論文 参考訳(メタデータ) (2024-09-25T03:54:01Z) - Syn-to-Real Unsupervised Domain Adaptation for Indoor 3D Object Detection [50.448520056844885]
室内3次元物体検出における非教師なし領域適応のための新しいフレームワークを提案する。
合成データセット3D-FRONTから実世界のデータセットScanNetV2とSUN RGB-Dへの適応結果は、ソースオンリーベースラインよりも9.7%、9.1%のmAP25が顕著に改善されていることを示している。
論文 参考訳(メタデータ) (2024-06-17T08:18:41Z) - ADOD: Adaptive Domain-Aware Object Detection with Residual Attention for
Underwater Environments [1.2624532490634643]
本研究では,水中物体検出における領域一般化のための新しいアプローチであるADODを提案する。
本手法は, 様々な水中環境下での堅牢性を確保するため, 多様な領域にまたがってモデルを一般化する能力を高める。
論文 参考訳(メタデータ) (2023-12-11T19:20:56Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
本稿では、検出器フレンドリーな画像から、転送可能な事前知識を求める。
これは、検出器フレンドリー(DFUI)と水中画像の高度に劣化した領域が、特徴分布のギャップがあることを統計的に観察したものである。
高速かつパラメータの少ない本手法は変圧器型検出器よりも優れた性能を保っている。
論文 参考訳(メタデータ) (2023-08-24T12:32:46Z) - A Gated Cross-domain Collaborative Network for Underwater Object
Detection [14.715181402435066]
水中物体検出は養殖と海洋環境保護において重要な役割を担っている。
水中画像の品質向上のため,水中画像強調法(UIE)が提案されている。
本稿では,水中環境における可視性とコントラストの低さの課題に対処するため,GCC-Net(Gated Cross-domain Collaborative Network)を提案する。
論文 参考訳(メタデータ) (2023-06-25T06:28:28Z) - Underwater target detection based on improved YOLOv7 [7.264267222876267]
本研究では,水中目標検出のための改良型YOLOv7ネットワーク(YOLOv7-AC)を提案する。
提案するネットワークは、ACmixBlockモジュールを使用して、E-ELAN構造の3x3畳み込みブロックを置き換える。
ResNet-ACmixモジュールは、特徴情報の損失を回避し、計算量を削減するように設計されている。
論文 参考訳(メタデータ) (2023-02-14T09:50:52Z) - SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from
Point Cloud [125.9472454212909]
本稿では,3次元物体検出(SSDA3D)のための半改良型領域適応法を提案する。
SSDA3Dはドメイン間適応ステージとドメイン内一般化ステージを含む。
実験の結果,10%のラベル付きターゲットデータしか持たないSSDA3Dは,100%のターゲットラベルを持つ完全教師付きオラクルモデルを上回ることができることがわかった。
論文 参考訳(メタデータ) (2022-12-06T09:32:44Z) - A Novel Underwater Image Enhancement and Improved Underwater Biological
Detection Pipeline [8.326477369707122]
本稿では, YOLOv5 バックボーンに畳み込みブロックアテンションモジュール (CBAM) を付加した特徴情報を取得する手法を提案する。
物体特性に対する水中生物特性の干渉が減少し、対象情報に対するバックボーンネットワークの出力が向上する。
論文 参考訳(メタデータ) (2022-05-20T14:18:17Z) - Underwater Object Classification and Detection: first results and open
challenges [1.1549572298362782]
本研究は,水中環境における物体検出の問題点を概観する。
我々は、従来の最先端(SOTA)アルゴリズムの欠点を分析し、定量化する。
論文 参考訳(メタデータ) (2022-01-04T04:54:08Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
ディープラーニングに基づく3Dオブジェクト検出は、大規模な自律走行データセットの出現によって、前例のない成功を収めた。
既存の3Dドメイン適応検出手法は、しばしばターゲットのドメインアノテーションへの事前アクセスを前提とします。
我々は、ソースドメインアノテーションのみを利用する、より現実的な、教師なしの3Dドメイン適応検出について研究する。
論文 参考訳(メタデータ) (2021-07-23T17:19:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。