論文の概要: Collision Probability Distribution Estimation via Temporal Difference Learning
- arxiv url: http://arxiv.org/abs/2407.20000v1
- Date: Mon, 29 Jul 2024 13:32:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 13:34:43.372433
- Title: Collision Probability Distribution Estimation via Temporal Difference Learning
- Title(参考訳): 時間差学習による衝突確率分布の推定
- Authors: Thomas Steinecker, Thorsten Luettel, Mirko Maehlisch,
- Abstract要約: 累積衝突確率分布を推定する先駆的なフレームワークであるCollisionProを紹介する。
我々は、強化学習の文脈において、我々の枠組みを定式化し、安全に配慮したエージェントの道を開く。
現実的な自律運転シミュレータを用いて,本フレームワークの総合的な検討を行った。
- 参考スコア(独自算出の注目度): 0.46085106405479537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce CollisionPro, a pioneering framework designed to estimate cumulative collision probability distributions using temporal difference learning, specifically tailored to applications in robotics, with a particular emphasis on autonomous driving. This approach addresses the demand for explainable artificial intelligence (XAI) and seeks to overcome limitations imposed by model-based approaches and conservative constraints. We formulate our framework within the context of reinforcement learning to pave the way for safety-aware agents. Nevertheless, we assert that our approach could prove beneficial in various contexts, including a safety alert system or analytical purposes. A comprehensive examination of our framework is conducted using a realistic autonomous driving simulator, illustrating its high sample efficiency and reliable prediction capabilities for previously unseen collision events. The source code is publicly available.
- Abstract(参考訳): 我々は、時間差学習を用いて累積衝突確率分布を推定する先駆的なフレームワークであるCollisionProを紹介した。
このアプローチは、説明可能な人工知能(XAI)の需要に対処し、モデルベースのアプローチと保守的な制約によって課される制限を克服しようとしている。
我々は、強化学習の文脈において、我々の枠組みを定式化し、安全に配慮したエージェントの道を開く。
それでも私たちは、安全警報システムや分析目的など、さまざまな状況において、このアプローチが有益であることを証明できると断言しています。
現実的な自律走行シミュレータを用いて,本フレームワークの総合的な検討を行い,その高効率性と従来見られなかった衝突イベントに対する信頼性の高い予測能力について考察した。
ソースコードは公開されている。
関連論文リスト
- Automatic AI controller that can drive with confidence: steering vehicle with uncertainty knowledge [3.131134048419781]
本研究は,機械学習フレームワークを用いた車両の横方向制御システムの開発に焦点をあてる。
確率論的学習モデルであるベイズニューラルネットワーク(BNN)を用いて不確実性定量化に対処する。
信頼しきい値を確立することで、手動による介入をトリガーし、安全なパラメータの外で動作した場合に、制御がアルゴリズムから解放されることを保証できます。
論文 参考訳(メタデータ) (2024-04-24T23:22:37Z) - Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - Self-Aware Trajectory Prediction for Safe Autonomous Driving [9.868681330733764]
軌道予測は、自動運転ソフトウェアスタックの重要なコンポーネントの1つである。
本稿では,自己認識軌道予測手法を提案する。
提案手法は, 自己認識, メモリフットプリント, リアルタイム性能で良好に動作した。
論文 参考訳(メタデータ) (2023-05-16T03:53:23Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - Domain Knowledge Driven Pseudo Labels for Interpretable Goal-Conditioned
Interactive Trajectory Prediction [29.701029725302586]
目標条件付きフレームワークを用いた共同軌道予測問題について検討する。
本研究では,条件付き変分自動エンコーダ(CVAE)モデルを導入し,異なる相互作用モードを潜在空間に明示的にエンコードする。
KLの消滅を回避する新しい手法を提案し、擬似ラベルを用いた解釈可能な対話型潜在空間を誘導する。
論文 参考訳(メタデータ) (2022-03-28T21:41:21Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
渋滞パターンを明示的に学習し、新しい「センス--学習--Reason--予測」フレームワークを考案する。
学習段階を2段階に分解することで、「学生」は「教師」から文脈的手がかりを学習し、衝突のない軌跡を生成する。
実験では,提案モデルが合成データセットにおいて衝突のない軌道予測を生成できることを実証する。
論文 参考訳(メタデータ) (2021-03-26T02:42:33Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z) - Scalable Autonomous Vehicle Safety Validation through Dynamic
Programming and Scene Decomposition [37.61747231296097]
本稿では、近似動的プログラミングを用いて、自律的なポリシの障害に対する分布を推定する新しい安全性検証手法を提案する。
両実験とも, ベースラインアプローチと比較して, 故障数の増加が見られた。
論文 参考訳(メタデータ) (2020-04-14T21:03:50Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
制御障壁関数(CBF)に基づく安全な制御器合成のための学習に基づくアプローチを提案する。
最適化に基づくCBFの学習手法を解析し、基礎となる力学系のリプシッツ仮定の下で証明可能な安全保証を享受する。
私たちの知る限りでは、これらはデータから確実に安全な制御障壁関数を学習する最初の結果です。
論文 参考訳(メタデータ) (2020-04-07T12:29:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。