論文の概要: Foundation Models for Rapid Autonomy Validation
- arxiv url: http://arxiv.org/abs/2411.03328v1
- Date: Tue, 22 Oct 2024 15:32:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 12:31:09.363405
- Title: Foundation Models for Rapid Autonomy Validation
- Title(参考訳): 迅速な自律性検証のための基礎モデル
- Authors: Alec Farid, Peter Schleede, Aaron Huang, Christoffer Heckman,
- Abstract要約: 重要な課題は、自動運転車が遭遇するあらゆる種類の運転シナリオでテストする必要があることだ。
本研究では,運転シナリオを再構築するための行動基礎モデル,特にマスク付きオートエンコーダ(MAE)の使用を提案する。
- 参考スコア(独自算出の注目度): 4.417336418010182
- License:
- Abstract: We are motivated by the problem of autonomous vehicle performance validation. A key challenge is that an autonomous vehicle requires testing in every kind of driving scenario it could encounter, including rare events, to provide a strong case for safety and show there is no edge-case pathological behavior. Autonomous vehicle companies rely on potentially millions of miles driven in realistic simulation to expose the driving stack to enough miles to estimate rates and severity of collisions. To address scalability and coverage, we propose the use of a behavior foundation model, specifically a masked autoencoder (MAE), trained to reconstruct driving scenarios. We leverage the foundation model in two complementary ways: we (i) use the learned embedding space to group qualitatively similar scenarios together and (ii) fine-tune the model to label scenario difficulty based on the likelihood of a collision upon re-simulation. We use the difficulty scoring as importance weighting for the groups of scenarios. The result is an approach which can more rapidly estimate the rates and severity of collisions by prioritizing hard scenarios while ensuring exposure to every kind of driving scenario.
- Abstract(参考訳): 我々は自律走行車の性能検証の問題に動機付けられている。
重要な課題は、自動運転車が安全のために強力なケースを提供し、エッジケースの病理行動がないことを示すために、まれなイベントを含むあらゆる種類の運転シナリオでテストする必要があることだ。
自動運転車の企業は、現実的なシミュレーションで数百万マイル(約2万km)の走行距離に頼って、衝突の頻度と重大さを推定するのに十分なマイル(約2万km)まで走行スタックを露出する。
スケーラビリティとカバレッジに対処するため,運転シナリオを再構築するための行動基礎モデル,特にマスク付きオートエンコーダ(MAE)を提案する。
私たちは2つの補完的な方法で基礎モデルを活用します。
(i)学習した埋め込み空間を用いて質的に類似したシナリオをまとめる
(II) 再シミュレーション時の衝突の可能性に基づいて, シナリオの難しさをラベル付けするためのモデルを微調整する。
シナリオのグループの重み付けとして、スコアリングの難しさを使用します。
その結果、ハードシナリオを優先順位付けし、あらゆる種類の運転シナリオへの露出を確実にすることで、衝突の速度と深刻度をより迅速に推定することができる。
関連論文リスト
- ICSFuzz: Collision Detector Bug Discovery in Autonomous Driving Simulators [11.343198884451166]
本稿では,自律走行シミュレータの信頼性向上を目的として,無視衝突シナリオを系統的に発見することを目的とする。
我々は、無視された衝突シナリオを効率的に発見するためのブラックボックスファジリング手法であるICSFuzzを提案する。
我々はICSFuzzを、最先端のシミュレーションベースのADSテスト手法であるDriveFuzzと比較し、その託宣を我々の無視照合対応託宣に置き換えた。
論文 参考訳(メタデータ) (2024-08-11T04:48:54Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - ReMAV: Reward Modeling of Autonomous Vehicles for Finding Likely Failure
Events [1.84926694477846]
本稿では、まず、オフライン軌道を用いて、既存の自動運転車の挙動を分析するブラックボックステストフレームワークを提案する。
実験の結果,車両衝突,道路物体衝突,歩行者衝突,オフロードステアリング事故の発生率は35,23,48,50%増加した。
論文 参考訳(メタデータ) (2023-08-28T13:09:00Z) - DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
本研究では,現実の運転において頻繁に発生する多様な事故シナリオを含む大規模データセットを提案する。
提案したDeepAccidentデータセットには57Kの注釈付きフレームと285Kの注釈付きサンプルが含まれており、これは大規模なnuScenesデータセットの約7倍である。
論文 参考訳(メタデータ) (2023-04-03T17:37:00Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVEは、特定のプランナーが衝突のような望ましくない振る舞いを発生させるような、困難なシナリオを自動的に生成する手法である。
シナリオの妥当性を維持するために、キーとなるアイデアは、グラフベースの条件付きVAEという形で、学習した交通運動モデルを活用することである。
その後の最適化は、シナリオの"解決"を見つけるために使用され、与えられたプランナーを改善するのに有効である。
論文 参考訳(メタデータ) (2021-12-09T18:03:27Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles [76.46575807165729]
我々は,任意のLiDARベースの自律システムに対して,安全クリティカルなシナリオを生成するための,敵対的フレームワークであるAdvSimを提案する。
センサデータから直接シミュレートすることにより、完全な自律スタックに対して安全クリティカルな敵シナリオを得る。
論文 参考訳(メタデータ) (2021-01-16T23:23:12Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
トレーニング外の配布(OOD)シナリオは、デプロイ時にエージェントを学ぶ上で一般的な課題である。
インプロバスト模倣計画(RIP)と呼ばれる不確実性を考慮した計画手法を提案する。
提案手法は,OODシーンにおける過信および破滅的な外挿を低減し,分布変化を検知し,回復することができる。
分散シフトを伴うタスク群に対する駆動エージェントのロバスト性を評価するために,自動走行車ノベルシーンベンチマークであるtexttCARNOVEL を導入する。
論文 参考訳(メタデータ) (2020-06-26T11:07:32Z) - Towards Automated Safety Coverage and Testing for Autonomous Vehicles
with Reinforcement Learning [0.3683202928838613]
検証は、システムが日々の運転で遭遇する可能性のあるシナリオや状況において、自動運転車システムをテストに投入する。
本稿では,AVソフトウェア実装における障害事例と予期せぬ交通状況を生成するために強化学習(RL)を提案する。
論文 参考訳(メタデータ) (2020-05-22T19:00:38Z) - Scalable Autonomous Vehicle Safety Validation through Dynamic
Programming and Scene Decomposition [37.61747231296097]
本稿では、近似動的プログラミングを用いて、自律的なポリシの障害に対する分布を推定する新しい安全性検証手法を提案する。
両実験とも, ベースラインアプローチと比較して, 故障数の増加が見られた。
論文 参考訳(メタデータ) (2020-04-14T21:03:50Z) - Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios [10.53961877853783]
対戦環境における自律走行車の評価を効率よく行うための適応評価フレームワークを提案する。
危険なシナリオのマルチモーダルな性質を考慮すると、多様性のために異なる局所最適化を表現するためにアンサンブルモデルを使用する。
その結果,テスト車両の性能は有意に低下した。
論文 参考訳(メタデータ) (2020-04-14T14:12:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。