論文の概要: Combining Geometric and Information-Theoretic Approaches for Multi-Robot
Exploration
- arxiv url: http://arxiv.org/abs/2004.06856v1
- Date: Wed, 15 Apr 2020 02:02:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 03:58:42.930641
- Title: Combining Geometric and Information-Theoretic Approaches for Multi-Robot
Exploration
- Title(参考訳): 幾何と情報理論を組み合わせたマルチロボット探査
- Authors: Aravind Preshant Premkumar, Kevin Yu, and Pratap Tokekar
- Abstract要約: 提案アルゴリズムの探索時間は,オフラインの最適探索アルゴリズムに対して($p$の関数として)競合的であることを示す。
このアルゴリズムは、単ボットポリゴン探索アルゴリズム、高次計画のための木探索アルゴリズム、低次計画のためのサブモジュラーオリエンテーアアルゴリズムに基づいている。
- 参考スコア(独自算出の注目度): 16.010307336422148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an algorithm to explore an orthogonal polygon using a team of $p$
robots. This algorithm combines ideas from information-theoretic exploration
algorithms and computational geometry based exploration algorithms. We show
that the exploration time of our algorithm is competitive (as a function of
$p$) with respect to the offline optimal exploration algorithm. The algorithm
is based on a single-robot polygon exploration algorithm, a tree exploration
algorithm for higher level planning and a submodular orienteering algorithm for
lower level planning. We discuss how this strategy can be adapted to real-world
settings to deal with noisy sensors. In addition to theoretical analysis, we
investigate the performance of our algorithm through simulations for multiple
robots and experiments with a single robot.
- Abstract(参考訳): p$ロボットのチームを用いて直交多角形を探索するアルゴリズムを提案する。
このアルゴリズムは、情報理論探索アルゴリズムと計算幾何学に基づく探索アルゴリズムのアイデアを組み合わせる。
我々は,オフライン最適探索アルゴリズムに関して,アルゴリズムの探索時間が($p$の関数として)競争的であることを示す。
このアルゴリズムは、単ロボット多角探索アルゴリズム、高レベル計画のための木探索アルゴリズム、低レベル計画のためのサブモジュラーオリエンテーリングアルゴリズムに基づいている。
我々は、この戦略を現実世界の設定に応用し、ノイズの多いセンサを扱う方法について論じる。
理論解析に加えて,複数ロボットのシミュレーションと単一ロボットによる実験により,アルゴリズムの性能について検討した。
関連論文リスト
- Contribution \`a l'Optimisation d'un Comportement Collectif pour un
Groupe de Robots Autonomes [0.0]
この論文は集団ロボット工学の分野、特にマルチロボットシステムの最適化問題を研究している。
最初の貢献は、未知領域探索問題の解決にButterfly Algorithm Optimization (BOA) を用いることである。
第2の貢献は、ロボット工学における動的増分問題をベンチマークするための新しいシミュレーションフレームワークの開発である。
論文 参考訳(メタデータ) (2023-06-10T21:49:08Z) - Dual Algorithmic Reasoning [9.701208207491879]
本稿では,基礎となるアルゴリズム問題の双対性を利用してアルゴリズムを学習することを提案する。
アルゴリズム学習における最適化問題の2つの定義を同時に学習することで、より良い学習が可能になることを実証する。
次に、難易度の高い脳血管分類タスクにデプロイすることで、二元アルゴリズム推論の現実的な実用性を検証する。
論文 参考訳(メタデータ) (2023-02-09T08:46:23Z) - The CLRS Algorithmic Reasoning Benchmark [28.789225199559834]
アルゴリズムの学習表現は機械学習の新たな領域であり、ニューラルネットワークから古典的なアルゴリズムで概念をブリッジしようとしている。
本稿では,従来のアルゴリズムを包括するCLRS Algorithmic Reasoning Benchmarkを提案する。
我々のベンチマークは、ソート、探索、動的プログラミング、グラフアルゴリズム、文字列アルゴリズム、幾何アルゴリズムなど、様々なアルゴリズムの推論手順にまたがっている。
論文 参考訳(メタデータ) (2022-05-31T09:56:44Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
ノード重み付きグラフが与えられたとき、ノード重みが最大となる独立した(相互に非隣接な)ノードの集合を見つける。
このアプリケーションで放送されるグラフの中には、数十万のノードと数億のエッジを持つ大きなものもあります。
我々は,不規則なランダム化適応検索フレームワークにおいてメタヒューリスティックな新しい局所探索アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-03-28T21:34:16Z) - CrossBeam: Learning to Search in Bottom-Up Program Synthesis [51.37514793318815]
ボトムアップ合成のためのハンズオン検索ポリシーを学習するためのニューラルネットワークのトレーニングを提案する。
私たちのアプローチは、CrossBeamと呼ばれ、ニューラルモデルを使用して、以前に探索されたプログラムを新しいプログラムに組み合わせる方法を選択します。
我々はCrossBeamが効率的に検索することを学び、最先端技術と比較してプログラム空間のより小さな部分を探索する。
論文 参考訳(メタデータ) (2022-03-20T04:41:05Z) - Systematic Comparison of Path Planning Algorithms using PathBench [55.335463666037086]
パスプランニングはモバイルロボティクスの重要な構成要素である。
学習に基づく経路計画アルゴリズムの開発は、急速な成長を遂げている。
本稿では,パスプランニングアルゴリズムの開発,視覚化,トレーニング,テスト,ベンチマークを行うプラットフォームであるPathBenchについて述べる。
論文 参考訳(メタデータ) (2022-03-07T01:52:57Z) - Deducing of Optimal Machine Learning Algorithms for Heterogeneity [0.0]
本稿では,アルゴリズムの最適点について述べる。
合成データセットを構築し、教師付き機械学習の実行を5つの異なるアルゴリズムで実行しました。
論文 参考訳(メタデータ) (2021-11-10T07:55:26Z) - PathBench: A Benchmarking Platform for Classical and Learned Path
Planning Algorithms [59.3879573040863]
パスプランニングは、モバイルロボティクスの重要なコンポーネントです。
アルゴリズムを全体的あるいは統一的にベンチマークする試みはほとんど行われていない。
本稿では,パスプランニングアルゴリズムの開発,視覚化,トレーニング,テスト,ベンチマークを行うプラットフォームであるPathBenchについて述べる。
論文 参考訳(メタデータ) (2021-05-04T21:48:18Z) - Waypoint Planning Networks [66.72790309889432]
本稿では,ローカルカーネル(A*のような古典的アルゴリズム)と学習アルゴリズムを用いたグローバルカーネルを用いたLSTMに基づくハイブリッドアルゴリズムを提案する。
我々は、WPNとA*を比較し、動き計画ネットワーク(MPNet)やバリューネットワーク(VIN)を含む関連する作業と比較する。
WPN の探索空間は A* よりもかなり小さいが、ほぼ最適な結果が得られることが示されている。
論文 参考訳(メタデータ) (2021-05-01T18:02:01Z) - Nature-Inspired Optimization Algorithms: Research Direction and Survey [0.0]
自然に着想を得たアルゴリズムは、様々な最適化問題を解くのによく用いられる。
我々は自然に触発されたアルゴリズムを自然進化ベース、群知性ベース、生物ベース、科学ベースなどと分類する。
本研究の目的は, インスピレーション源, 基本演算子, 制御パラメータ, 特徴, 変種, 適用範囲に基づいて, 様々な自然に着想を得たアルゴリズムを網羅的に解析することである。
論文 参考訳(メタデータ) (2021-02-08T06:03:36Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。