Hybrid filtering for a class of nonlinear quantum systems subject to
classical stochastic disturbances
- URL: http://arxiv.org/abs/2004.07050v1
- Date: Mon, 6 Apr 2020 06:37:47 GMT
- Title: Hybrid filtering for a class of nonlinear quantum systems subject to
classical stochastic disturbances
- Authors: Qi Yu, Daoyi Dong, Ian R. Petersen
- Abstract summary: A hybrid quantum-classical filtering problem, where a qubit system is disturbed by a classical process, is investigated.
The strategy is to model the classical disturbance by using an optical cavity. Relations between classical disturbances and the cavity analog system are analyzed.
A master equation for the qubit-cavity hybrid system is given, based on which estimates for the state of the cavity system and the classical signal are obtained.
- Score: 11.170233682435303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A hybrid quantum-classical filtering problem, where a qubit system is
disturbed by a classical stochastic process, is investigated. The strategy is
to model the classical disturbance by using an optical cavity. Relations
between classical disturbances and the cavity analog system are analyzed. The
dynamics of the enlarged quantum network system, which includes a qubit system
and a cavity system, are derived. A stochastic master equation for the
qubit-cavity hybrid system is given, based on which estimates for the state of
the cavity system and the classical signal are obtained. The quantum extended
Kalman filter is employed to achieve efficient computation. Numerical results
are presented to illustrate the effectiveness of our methods.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Stochastic simulation of dissipative quantum oscillators [0.0]
We use the paradigmatic case of a dissipative oscillator to give a pedagogic introduction into the modelling of open quantum systems.
We use quasiclassical methods that use a 'quantum' noise spectrum to capture the influence of the environment on the system.
Such methods have the potential to offer insights into the impact of the quantum nature of the environment on the dynamics of the system of interest whilst still being computationally tractable.
arXiv Detail & Related papers (2024-06-07T15:49:50Z) - Towards a dissipative quantum classifier [10.528587399925938]
We propose a novel quantum classifier utilizing dissipative engineering.
By subjecting the auxiliary qubits to carefully tailored strong dissipations, we establish a one-to-one mapping between classical data and dissipative modes.
We train the dissipative central spin-qubit system to perform specific classification tasks akin to classical neural networks.
arXiv Detail & Related papers (2023-10-16T10:26:24Z) - Towards the resolution of a quantized chaotic phase space: The interplay
of dynamics with noise [0.0]
We outline formal and physical similarities between the quantum dynamics of open systems, and the mesoscopic description of classical systems affected by weak noise.
The main tool of our interest is the dissipative Wigner equation, that, for suitable timescales, becomes analogous to the Fokker-Planck equation describing classical advection and diffusion.
arXiv Detail & Related papers (2023-01-04T13:04:16Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Mixed state entanglement by efficient separation of quantum from
classical correlations [0.0]
Entanglement is the key resource for quantum technologies and is at the root of exciting many-body phenomena.
Here, we devise an entanglement measure for such realistic open systems by filtering the entanglement spectrum of the mixed state.
We showcase our scheme for spinless particles moving on a chain in presence of dephasing.
arXiv Detail & Related papers (2022-02-15T14:12:16Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Stoquasticity in circuit QED [78.980148137396]
We show that scalable sign-problem free path integral Monte Carlo simulations can typically be performed for such systems.
We corroborate the recent finding that an effective, non-stoquastic qubit Hamiltonian can emerge in a system of capacitively coupled flux qubits.
arXiv Detail & Related papers (2020-11-02T16:41:28Z) - Incoherent quantum algorithm dynamics of an open system with near-term
devices [0.0]
Hybrid quantum-classical algorithms are among the most promising systems to implement quantum computing.
We investigate a quantum dynamics algorithm for the density matrix obeying the von Neumann equation.
We consider the dynamics of the ensemble-averaged of disordered quantum systems.
arXiv Detail & Related papers (2020-08-12T14:22:42Z) - Optimal non-classical correlations of light with a levitated nano-sphere [34.82692226532414]
Nonclassical correlations provide a resource for many applications in quantum technology.
Optomechanical systems can generate nonclassical correlations between the mechanical mode and a mode of travelling light.
We propose automated optimization of the production of quantum correlations in such a system.
arXiv Detail & Related papers (2020-06-26T15:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.