Towards the resolution of a quantized chaotic phase space: The interplay
of dynamics with noise
- URL: http://arxiv.org/abs/2301.02165v1
- Date: Wed, 4 Jan 2023 13:04:16 GMT
- Title: Towards the resolution of a quantized chaotic phase space: The interplay
of dynamics with noise
- Authors: Domenico Lippolis, Akira Shudo
- Abstract summary: We outline formal and physical similarities between the quantum dynamics of open systems, and the mesoscopic description of classical systems affected by weak noise.
The main tool of our interest is the dissipative Wigner equation, that, for suitable timescales, becomes analogous to the Fokker-Planck equation describing classical advection and diffusion.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We outline formal and physical similarities between the quantum dynamics of
open systems, and the mesoscopic description of classical systems affected by
weak noise. The main tool of our interest is the dissipative Wigner equation,
that, for suitable timescales, becomes analogous to the Fokker-Planck equation
describing classical advection and diffusion. This correspondence allows in
principle to surmise a a finite resolution, other than the Planck scale, for
the quantized state space of the open system, particularly meaningful when the
latter underlies chaotic classical dynamics. We provide representative examples
of the quantum-stochastic parallel with noisy Hopf cycles and Van der Pol
oscillators.
Related papers
- Stochastic simulation of dissipative quantum oscillators [0.0]
We use the paradigmatic case of a dissipative oscillator to give a pedagogic introduction into the modelling of open quantum systems.
We use quasiclassical methods that use a 'quantum' noise spectrum to capture the influence of the environment on the system.
Such methods have the potential to offer insights into the impact of the quantum nature of the environment on the dynamics of the system of interest whilst still being computationally tractable.
arXiv Detail & Related papers (2024-06-07T15:49:50Z) - Classical approach to equilibrium of out-of-time ordered correlators in
mixed systems [0.0]
The out-of-time ordered correlator (OTOC) is a measure of scrambling of quantum information.
In this work, we show that classical generalized resonances govern the relaxation to equilibrium of the OTOC in the ubiquitous case of a system with mixed dynamics.
arXiv Detail & Related papers (2023-03-11T01:33:26Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Scarring in classical chaotic dynamics with noise [0.0]
scarring is enhancement of probability density around unstable periodic orbits of a chaotic system.
Scarring can be measured by studying autocorrelation functions and their power spectra.
arXiv Detail & Related papers (2021-01-20T23:34:39Z) - Chaos in the quantum Duffing oscillator in the semiclassical regime
under parametrized dissipation [0.0]
We study the quantum dissipative Duffing oscillator across a range of system sizes and environmental couplings.
We quantify the system sizes where quantum dynamics cannot be simulated using semiclassical or noise-added classical approximations.
Our findings generalize the previous surprising result that classically regular orbits can have the greatest quantum-classical differences in the semiclassical regime.
arXiv Detail & Related papers (2020-10-30T22:03:02Z) - Phase space theory for open quantum systems with local and collective
dissipative processes [0.0]
We investigate driven dissipative quantum dynamics of an ensemble of two-level systems given by a Markovian master equation with collective and noncollective dissipators.
Our results expose, utilize and promote pioneered techniques in the context of laser theory.
arXiv Detail & Related papers (2020-06-05T07:22:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.