論文の概要: Improving Input-Output Linearizing Controllers for Bipedal Robots via
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2004.07276v2
- Date: Sat, 2 May 2020 10:50:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 04:23:35.137682
- Title: Improving Input-Output Linearizing Controllers for Bipedal Robots via
Reinforcement Learning
- Title(参考訳): 強化学習による二足歩行ロボットの入力出力線形化制御系の改良
- Authors: Fernando Casta\~neda, Mathias Wulfman, Ayush Agrawal, Tyler
Westenbroek, Claire J. Tomlin, S. Shankar Sastry, Koushil Sreenath
- Abstract要約: 入力出力線形化コントローラの主な欠点は、正確な力学モデルが必要であり、入力制約を考慮できないことである。
本稿では,強化学習技術を用いた二足歩行ロボット制御の具体例について,両課題に対処する。
- 参考スコア(独自算出の注目度): 85.13138591433635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The main drawbacks of input-output linearizing controllers are the need for
precise dynamics models and not being able to account for input constraints.
Model uncertainty is common in almost every robotic application and input
saturation is present in every real world system. In this paper, we address
both challenges for the specific case of bipedal robot control by the use of
reinforcement learning techniques. Taking the structure of a standard
input-output linearizing controller, we use an additive learned term that
compensates for model uncertainty. Moreover, by adding constraints to the
learning problem we manage to boost the performance of the final controller
when input limits are present. We demonstrate the effectiveness of the designed
framework for different levels of uncertainty on the five-link planar walking
robot RABBIT.
- Abstract(参考訳): 入出力線形化コントローラの主な欠点は、正確なダイナミクスモデルの必要性であり、入力制約を考慮できないことである。
モデルの不確実性は、ほとんどすべてのロボットアプリケーションで一般的であり、入力飽和度は、あらゆる現実世界システムに存在する。
本稿では,強化学習技術を用いた二足歩行ロボット制御の具体例について,両課題に対処する。
標準入力出力線形化制御器の構造を考慮し,モデルの不確かさを補う付加学習項を用いる。
さらに,学習問題に制約を加えることで,入力限界が存在する場合に最終制御器の性能を高めることができる。
本研究では,5リンク平面歩行ロボットRABBITにおける不確実性レベルに対する設計フレームワークの有効性を示す。
関連論文リスト
- Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback [16.46487826869775]
本稿では,モデルベース制御とRLベース制御を統合し,ロバスト性を高めるニューラル内部モデル制御を提案する。
我々のフレームワークは、剛体力学にニュートン・オイラー方程式を適用することで予測モデルを合理化し、複雑な高次元非線形性を捉える必要がなくなる。
本研究では,四足歩行ロボットと四足歩行ロボットにおけるフレームワークの有効性を実証し,最先端の手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2024-11-20T07:07:42Z) - On-device Self-supervised Learning of Visual Perception Tasks aboard
Hardware-limited Nano-quadrotors [53.59319391812798]
SI50グラム以下のナノドロンは、学術と産業の両方で勢いを増している。
彼らの最も魅力的なアプリケーションは、知覚のためのディープラーニングモデルに依存している。
未知の環境にデプロイする場合、これらのモデルはドメインシフトによってパフォーマンスが低下することが多い。
本研究では,ナノドローンを用いたデバイス上での学習を初めて提案する。
論文 参考訳(メタデータ) (2024-03-06T22:04:14Z) - Combining model-predictive control and predictive reinforcement learning
for stable quadrupedal robot locomotion [0.0]
モデル予測型と予測型強化型学習コントローラの組み合わせによりこれを実現できるかを検討する。
本研究では,両制御手法を組み合わせて,四足歩行ロボットの安定ゲート生成問題に対処する。
論文 参考訳(メタデータ) (2023-07-15T09:22:37Z) - AI Enhanced Control Engineering Methods [66.08455276899578]
我々は、AIツールがアプリケーションを制御するのにどのように役立つかを探求する。
直近の2つの応用は、局所安定性解析やカルマンフィルタを用いた状態推定のための系力学の線形化である。
さらに、モデル予測制御アプリケーションにおける状態ベクトルのグローバルパラメータ化と制御入力に対する機械学習モデルの利用について検討する。
論文 参考訳(メタデータ) (2023-06-08T20:31:14Z) - Differentiable Constrained Imitation Learning for Robot Motion Planning
and Control [0.26999000177990923]
我々は,交通エージェントのシミュレーションだけでなく,ロボットの動作計画と制御を制約するフレームワークを開発した。
モバイルロボットと自動運転アプリケーションに焦点をあてる。
移動ロボットナビゲーションと自動走行のシミュレーション実験は,提案手法の性能を示す証拠となる。
論文 参考訳(メタデータ) (2022-10-21T08:19:45Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Automatic Rule Induction for Efficient Semi-Supervised Learning [56.91428251227253]
半教師付き学習は、少量のラベル付きデータからNLPモデルを一般化できることを約束している。
事前訓練されたトランスモデルはブラックボックス相関エンジンとして機能し、説明が困難であり、時には信頼性に欠ける振る舞いをする。
本稿では,これらの課題に,簡易かつ汎用的なフレームワークであるAutomatic Rule Injection (ARI) を用いて対処することを提案する。
論文 参考訳(メタデータ) (2022-05-18T16:50:20Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - Towards Safe Control of Continuum Manipulator Using Shielded Multiagent
Reinforcement Learning [1.2647816797166165]
ロボットの制御は、MADQNフレームワークにおける1つのエージェント問題である1-DoFとして定式化され、学習効率が向上する。
シールドされたMADQNにより、ロボットは外部負荷下で、サブミリ単位のルート平均二乗誤差で点と軌道追跡を行うことができた。
論文 参考訳(メタデータ) (2021-06-15T05:55:05Z) - Model-based Reinforcement Learning from Signal Temporal Logic
Specifications [0.17205106391379021]
本稿では,報酬/コスト関数の代替として,STL(Signal Temporal Logic)と呼ばれる形式仕様言語を用いて,望まれるハイレベルロボット動作を表現することを提案する。
提案アルゴリズムは、ピック・アンド・プレース・ロボットアームなどのロボットシステムのシミュレーションと、自律走行車に対する適応的なクルーズ制御を実証的に評価する。
論文 参考訳(メタデータ) (2020-11-10T07:31:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。