論文の概要: Relational Modeling for Robust and Efficient Pulmonary Lobe Segmentation
in CT Scans
- arxiv url: http://arxiv.org/abs/2004.07443v4
- Date: Tue, 12 May 2020 16:20:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 22:04:47.705472
- Title: Relational Modeling for Robust and Efficient Pulmonary Lobe Segmentation
in CT Scans
- Title(参考訳): CTスキャンにおけるロバスト・高能率肺葉分節の関連モデリング
- Authors: Weiyi Xie, Colin Jacobs, Jean-Paul Charbonnier, Bram van Ginneken
- Abstract要約: 肺葉の形状は互いに影響を与え、その境界は他の構造物の外観に関係している。
このような構造的関係は、COVID-19やCOPDなどの疾患によって肺が影響を受ける場合、肺葉の正確な起伏に重要な役割を果たすと論じる。
本稿では、新しい非局所ニューラルネットワークモジュールを導入することにより、構造化された関係を利用するリレーショナルアプローチ(RTSU-Net)を提案する。
- 参考スコア(独自算出の注目度): 6.7598132292923925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pulmonary lobe segmentation in computed tomography scans is essential for
regional assessment of pulmonary diseases. Recent works based on convolution
neural networks have achieved good performance for this task. However, they are
still limited in capturing structured relationships due to the nature of
convolution. The shape of the pulmonary lobes affect each other and their
borders relate to the appearance of other structures, such as vessels, airways,
and the pleural wall. We argue that such structural relationships play a
critical role in the accurate delineation of pulmonary lobes when the lungs are
affected by diseases such as COVID-19 or COPD.
In this paper, we propose a relational approach (RTSU-Net) that leverages
structured relationships by introducing a novel non-local neural network
module. The proposed module learns both visual and geometric relationships
among all convolution features to produce self-attention weights.
With a limited amount of training data available from COVID-19 subjects, we
initially train and validate RTSU-Net on a cohort of 5000 subjects from the
COPDGene study (4000 for training and 1000 for evaluation). Using models
pre-trained on COPDGene, we apply transfer learning to retrain and evaluate
RTSU-Net on 470 COVID-19 suspects (370 for retraining and 100 for evaluation).
Experimental results show that RTSU-Net outperforms three baselines and
performs robustly on cases with severe lung infection due to COVID-19.
- Abstract(参考訳): CT検査における肺葉の分画は肺疾患の局所的評価に不可欠である。
畳み込みニューラルネットワークに基づく最近の研究は、このタスクで優れた性能を達成している。
しかし、畳み込みの性質上、構造的な関係を捉えることは制限されている。
肺葉の形状は互いに影響を与え、その境界は血管、気道、胸壁などの他の構造物の外観に関係している。
このような構造的関係は、COVID-19やCOPDなどの疾患によって肺が影響を受ける場合、肺葉の正確な起伏に重要な役割を果たす。
本稿では、新しい非局所ニューラルネットワークモジュールを導入することにより、構造化された関係を利用するリレーショナルアプローチ(RTSU-Net)を提案する。
提案するモジュールは,すべての畳み込み特徴の視覚的および幾何学的関係を学習し,自己付着重み付けを生成する。
新型コロナウイルス(covid-19)患者から得られるトレーニングデータは限られており、まずコプトゲン研究(4000名、評価1000名)の5000名を対象に、rtsu-netのトレーニングと検証を行いました。
COPDGeneで事前訓練したモデルを用いて,470人のCOVID-19被疑者(370人,評価100人)を対象にトランスファーラーニングを適用し,RTSU-Netを評価した。
実験の結果、RTSU-Netは3つのベースラインを上回り、新型コロナウイルスによる重篤な肺感染症に対して堅牢に作用することが示された。
関連論文リスト
- An Efficient and Robust Method for Chest X-Ray Rib Suppression that
Improves Pulmonary Abnormality Diagnosis [0.49998148477760956]
胸部X線(CXR)に対する胸部骨陰影の抑制は肺疾患の診断を改善することが示唆された。
従来のアプローチは、教師なしの物理的および教師なしのディープラーニングモデルに分類される。
本研究では,(1)空間変換勾配場における物理モデルによる最小化によりGT骨影を除去した2段階のトレーニングペアの生成について,一般化可能かつ効率的なワークフローを提案する。
2) 受信したCXRの高速リブ除去のために,ステージ1データセット上でのネットワークトレーニングをフル教師する。
論文 参考訳(メタデータ) (2023-02-19T23:47:02Z) - Pulmonary Vessel Segmentation based on Orthogonal Fused U-Net++ of Chest
CT Images [1.8692254863855962]
胸部CT画像から肺血管セグメンテーションの枠組みと改善過程について検討した。
アプローチの鍵となるのは、3つの軸から2.5D区分けネットワークを応用し、堅牢で完全に自動化された肺血管区分け結果を示す。
提案手法は,他のネットワーク構造よりも大きなマージンで優れ,平均DICEスコア0.9272,精度0.9310を極端に上回っている。
論文 参考訳(メタデータ) (2021-07-03T21:46:29Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
疾患のある肺領域は、しばしばCT画像に高密度ゾーンを生成し、損傷した葉を特定するアルゴリズムの実行を制限する。
この影響は、肺葉を分節する機械学習手法の改善を動機づけた。
このアプローチは、放射線科医のロバストなツールとして臨床現場で容易に採用することができる。
論文 参考訳(メタデータ) (2021-05-11T17:10:25Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
本研究は、新型コロナウイルスの肺病変の同定、セグメント化、定量化のために人工知能(AI)を活用することを目的とする。
2つのU-netのカスケードをベースとした自動解析パイプラインLungQuantシステムを開発した。
LungQuantシステムにおけるCT-Severity Score(CT-SS)の精度も評価した。
論文 参考訳(メタデータ) (2021-05-06T10:21:28Z) - Fibrosis-Net: A Tailored Deep Convolutional Neural Network Design for
Prediction of Pulmonary Fibrosis Progression from Chest CT Images [59.622239796473885]
肺線維症は、回復不能な肺組織スカーリングおよび損傷を引き起こす慢性肺疾患であり、肺容量の進行的減少と既知の治療法がない。
胸部CT画像からの肺線維化進展の予測に適した深部畳み込みニューラルネットワークであるFibrosis-Netを導入する。
論文 参考訳(メタデータ) (2021-03-06T02:16:41Z) - A Deep Learning-Based Approach to Extracting Periosteal and Endosteal
Contours of Proximal Femur in Quantitative CT Images [25.76523855274612]
セグメンテーションタスクのために,3次元の終端(3D)完全畳み込みニューラルネットワークを開発した。
同一のネットワーク構造を持つ2つのモデルが訓練され、それぞれ腹腔内輪郭と内皮輪郭に対して97.87%と96.49%のサイコロ類似係数(DSC)を達成した。
大腿骨頚部骨折のリスク予測や有限要素解析などの臨床応用の可能性を示した。
論文 参考訳(メタデータ) (2021-02-03T10:23:41Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
マルチタスク型マルチスライス深層学習システム(M3Lung-Sys)を提案する。
COVID-19とHealthy, H1N1, CAPとの鑑別に加えて, M3 Lung-Sysも関連病変の部位を特定できる。
論文 参考訳(メタデータ) (2020-10-07T06:22:24Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z) - COVID-ResNet: A Deep Learning Framework for Screening of COVID19 from
Radiographs [1.9798034349981157]
新型コロナウイルスと他の肺炎を鑑別するための正確な畳み込みニューラルネットワークフレームワークを提案する。
本研究は,モデル性能を向上させるために,トレーニング済みのResNet-50アーキテクチャを微調整する3段階の手法を提案する。
このモデルは、新型コロナウイルスの早期スクリーニングに役立ち、医療システムの負担軽減に役立つ。
論文 参考訳(メタデータ) (2020-03-31T17:42:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。