Vehicle Position Estimation with Aerial Imagery from Unmanned Aerial
Vehicles
- URL: http://arxiv.org/abs/2004.08206v2
- Date: Wed, 13 May 2020 11:42:30 GMT
- Title: Vehicle Position Estimation with Aerial Imagery from Unmanned Aerial
Vehicles
- Authors: Friedrich Kruber, Eduardo S\'anchez Morales, Samarjit Chakraborty,
Michael Botsch
- Abstract summary: This work describes a process to estimate a precise vehicle position from aerial imagery.
The state-of-the-art deep neural network Mask-RCNN is applied for that purpose.
A mean accuracy of 20 cm can be achieved with flight altitudes up to 100 m, Full-HD resolution and a frame-by-frame detection.
- Score: 4.555256739812733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The availability of real-world data is a key element for novel developments
in the fields of automotive and traffic research. Aerial imagery has the major
advantage of recording multiple objects simultaneously and overcomes
limitations such as occlusions. However, there are only few data sets
available. This work describes a process to estimate a precise vehicle position
from aerial imagery. A robust object detection is crucial for reliable results,
hence the state-of-the-art deep neural network Mask-RCNN is applied for that
purpose. Two training data sets are employed: The first one is optimized for
detecting the test vehicle, while the second one consists of randomly selected
images recorded on public roads. To reduce errors, several aspects are
accounted for, such as the drone movement and the perspective projection from a
photograph. The estimated position is comapared with a reference system
installed in the test vehicle. It is shown, that a mean accuracy of 20 cm can
be achieved with flight altitudes up to 100 m, Full-HD resolution and a
frame-by-frame detection. A reliable position estimation is the basis for
further data processing, such as obtaining additional vehicle state variables.
The source code, training weights, labeled data and example videos are made
publicly available. This supports researchers to create new traffic data sets
with specific local conditions.
Related papers
- XLD: A Cross-Lane Dataset for Benchmarking Novel Driving View Synthesis [84.23233209017192]
This paper presents a novel driving view synthesis dataset and benchmark specifically designed for autonomous driving simulations.
The dataset is unique as it includes testing images captured by deviating from the training trajectory by 1-4 meters.
We establish the first realistic benchmark for evaluating existing NVS approaches under front-only and multi-camera settings.
arXiv Detail & Related papers (2024-06-26T14:00:21Z) - Nighttime Driver Behavior Prediction Using Taillight Signal Recognition
via CNN-SVM Classifier [2.44755919161855]
This paper aims to enhance the ability to predict nighttime driving behavior by identifying taillights of both human-driven and autonomous vehicles.
The proposed model incorporates a customized detector designed to accurately detect front-vehicle taillights on the road.
To address the limited nighttime data, a unique pixel-wise image processing technique is implemented to convert daytime images into realistic night images.
arXiv Detail & Related papers (2023-10-25T15:23:33Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
We propose a novel task, called generalized few-shot 3D object detection, where we have a large amount of training data for common (base) objects, but only a few data for rare (novel) classes.
Specifically, we analyze in-depth differences between images and point clouds, and then present a practical principle for the few-shot setting in the 3D LiDAR dataset.
To solve this task, we propose an incremental fine-tuning method to extend existing 3D detection models to recognize both common and rare objects.
arXiv Detail & Related papers (2023-02-08T07:11:36Z) - Uncertainty-aware Vision-based Metric Cross-view Geolocalization [25.87104194833264]
We present an end-to-end differentiable model that uses the ground and aerial images to predict a probability distribution over possible vehicle poses.
We improve the previous state-of-the-art by a large margin even without ground or aerial data from the test region.
arXiv Detail & Related papers (2022-11-22T10:23:20Z) - SA-NET.v2: Real-time vehicle detection from oblique UAV images with use
of uncertainty estimation in deep meta-learning [0.0]
In this manuscript, we consider the problem of real-time vehicle detection for oblique UAV images based on a small training dataset and deep meta-learning.
The SA-Net.v2 is a developed method based on the SA-CNN for real-time vehicle detection by reformulating the squeeze-and-attention mechanism.
Experiments show that the SA-Net.v2 achieves promising performance in time series oblique UAV images.
arXiv Detail & Related papers (2022-08-04T09:08:47Z) - Weakly Supervised Training of Monocular 3D Object Detectors Using Wide
Baseline Multi-view Traffic Camera Data [19.63193201107591]
7DoF prediction of vehicles at an intersection is an important task for assessing potential conflicts between road users.
We develop an approach using a weakly supervised method of fine tuning 3D object detectors for traffic observation cameras.
Our method achieves vehicle 7DoF pose prediction accuracy on our dataset comparable to the top performing monocular 3D object detectors on autonomous vehicle datasets.
arXiv Detail & Related papers (2021-10-21T08:26:48Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
We release a Large-Scale Object Detection benchmark for Autonomous driving, named as SODA10M, containing 10 million unlabeled images and 20K images labeled with 6 representative object categories.
To improve diversity, the images are collected every ten seconds per frame within 32 different cities under different weather conditions, periods and location scenes.
We provide extensive experiments and deep analyses of existing supervised state-of-the-art detection models, popular self-supervised and semi-supervised approaches, and some insights about how to develop future models.
arXiv Detail & Related papers (2021-06-21T13:55:57Z) - Artificial and beneficial -- Exploiting artificial images for aerial
vehicle detection [1.4528189330418975]
We propose a generative approach that generates top-down images by overlaying artificial vehicles created from 2D CAD drawings on artificial or real backgrounds.
Our experiments with a modified RetinaNet object detection network show that adding these images to small real-world datasets significantly improves detection performance.
arXiv Detail & Related papers (2021-04-07T11:06:15Z) - Perceiving Traffic from Aerial Images [86.994032967469]
We propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images.
We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone 2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
arXiv Detail & Related papers (2020-09-16T11:37:43Z) - VehicleNet: Learning Robust Visual Representation for Vehicle
Re-identification [116.1587709521173]
We propose to build a large-scale vehicle dataset (called VehicleNet) by harnessing four public vehicle datasets.
We design a simple yet effective two-stage progressive approach to learning more robust visual representation from VehicleNet.
We achieve the state-of-art accuracy of 86.07% mAP on the private test set of AICity Challenge.
arXiv Detail & Related papers (2020-04-14T05:06:38Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
We propose a robust method for estimating road curb 3D parameters using a calibrated monocular camera equipped with a fisheye lens.
Our approach is able to estimate the vehicle to curb distance in real time with mean accuracy of more than 90%.
arXiv Detail & Related papers (2020-02-28T00:24:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.