Uncertainty-aware Vision-based Metric Cross-view Geolocalization
- URL: http://arxiv.org/abs/2211.12145v2
- Date: Wed, 17 May 2023 08:51:48 GMT
- Title: Uncertainty-aware Vision-based Metric Cross-view Geolocalization
- Authors: Florian Fervers, Sebastian Bullinger, Christoph Bodensteiner, Michael
Arens, Rainer Stiefelhagen
- Abstract summary: We present an end-to-end differentiable model that uses the ground and aerial images to predict a probability distribution over possible vehicle poses.
We improve the previous state-of-the-art by a large margin even without ground or aerial data from the test region.
- Score: 25.87104194833264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a novel method for vision-based metric cross-view
geolocalization (CVGL) that matches the camera images captured from a
ground-based vehicle with an aerial image to determine the vehicle's geo-pose.
Since aerial images are globally available at low cost, they represent a
potential compromise between two established paradigms of autonomous driving,
i.e. using expensive high-definition prior maps or relying entirely on the
sensor data captured at runtime.
We present an end-to-end differentiable model that uses the ground and aerial
images to predict a probability distribution over possible vehicle poses. We
combine multiple vehicle datasets with aerial images from orthophoto providers
on which we demonstrate the feasibility of our method. Since the ground truth
poses are often inaccurate w.r.t. the aerial images, we implement a
pseudo-label approach to produce more accurate ground truth poses and make them
publicly available.
While previous works require training data from the target region to achieve
reasonable localization accuracy (i.e. same-area evaluation), our approach
overcomes this limitation and outperforms previous results even in the strictly
more challenging cross-area case. We improve the previous state-of-the-art by a
large margin even without ground or aerial data from the test region, which
highlights the model's potential for global-scale application. We further
integrate the uncertainty-aware predictions in a tracking framework to
determine the vehicle's trajectory over time resulting in a mean position error
on KITTI-360 of 0.78m.
Related papers
- Adapting Fine-Grained Cross-View Localization to Areas without Fine Ground Truth [56.565405280314884]
This paper focuses on improving the performance of a trained model in a new target area by leveraging only the target-area images without fine GT.
We propose a weakly supervised learning approach based on knowledge self-distillation.
Our approach is validated using two recent state-of-the-art models on two benchmarks.
arXiv Detail & Related papers (2024-06-01T15:58:35Z) - Boosting 3-DoF Ground-to-Satellite Camera Localization Accuracy via
Geometry-Guided Cross-View Transformer [66.82008165644892]
We propose a method to increase the accuracy of a ground camera's location and orientation by estimating the relative rotation and translation between the ground-level image and its matched/retrieved satellite image.
Experimental results demonstrate that our method significantly outperforms the state-of-the-art.
arXiv Detail & Related papers (2023-07-16T11:52:27Z) - Energy-Based Models for Cross-Modal Localization using Convolutional
Transformers [52.27061799824835]
We present a novel framework for localizing a ground vehicle mounted with a range sensor against satellite imagery in the absence of GPS.
We propose a method using convolutional transformers that performs accurate metric-level localization in a cross-modal manner.
We train our model end-to-end and demonstrate our approach achieving higher accuracy than the state-of-the-art on KITTI, Pandaset, and a custom dataset.
arXiv Detail & Related papers (2023-06-06T21:27:08Z) - Visual Cross-View Metric Localization with Dense Uncertainty Estimates [11.76638109321532]
This work addresses visual cross-view metric localization for outdoor robotics.
Given a ground-level color image and a satellite patch that contains the local surroundings, the task is to identify the location of the ground camera within the satellite patch.
We devise a novel network architecture with denser satellite descriptors, similarity matching at the bottleneck, and a dense spatial distribution as output to capture multi-modal localization ambiguities.
arXiv Detail & Related papers (2022-08-17T20:12:23Z) - Satellite Image Based Cross-view Localization for Autonomous Vehicle [59.72040418584396]
This paper shows that by using an off-the-shelf high-definition satellite image as a ready-to-use map, we are able to achieve cross-view vehicle localization up to a satisfactory accuracy.
Our method is validated on KITTI and Ford Multi-AV Seasonal datasets as ground view and Google Maps as the satellite view.
arXiv Detail & Related papers (2022-07-27T13:16:39Z) - Cross-Camera Trajectories Help Person Retrieval in a Camera Network [124.65912458467643]
Existing methods often rely on purely visual matching or consider temporal constraints but ignore the spatial information of the camera network.
We propose a pedestrian retrieval framework based on cross-camera generation, which integrates both temporal and spatial information.
To verify the effectiveness of our method, we construct the first cross-camera pedestrian trajectory dataset.
arXiv Detail & Related papers (2022-04-27T13:10:48Z) - Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization
Using Satellite Image [91.29546868637911]
This paper addresses the problem of vehicle-mounted camera localization by matching a ground-level image with an overhead-view satellite map.
The key idea is to formulate the task as pose estimation and solve it by neural-net based optimization.
Experiments on standard autonomous vehicle localization datasets have confirmed the superiority of the proposed method.
arXiv Detail & Related papers (2022-04-10T19:16:58Z) - Continuous Self-Localization on Aerial Images Using Visual and Lidar
Sensors [25.87104194833264]
We propose a novel method for geo-tracking in outdoor environments by registering a vehicle's sensor information with aerial imagery of an unseen target region.
We train a model in a metric learning setting to extract visual features from ground and aerial images.
Our method is the first to utilize on-board cameras in an end-to-end differentiable model for metric self-localization on unseen orthophotos.
arXiv Detail & Related papers (2022-03-07T12:25:44Z) - Real-time Geo-localization Using Satellite Imagery and Topography for
Unmanned Aerial Vehicles [18.71806336611299]
We propose a framework that is reliable in changing scenes and pragmatic for lightweight embedded systems on UAVs.
The framework is comprised of two stages: offline database preparation and online inference.
We present field experiments of image-based localization on two different UAV platforms to validate our results.
arXiv Detail & Related papers (2021-08-07T01:47:19Z) - Vehicle Position Estimation with Aerial Imagery from Unmanned Aerial
Vehicles [4.555256739812733]
This work describes a process to estimate a precise vehicle position from aerial imagery.
The state-of-the-art deep neural network Mask-RCNN is applied for that purpose.
A mean accuracy of 20 cm can be achieved with flight altitudes up to 100 m, Full-HD resolution and a frame-by-frame detection.
arXiv Detail & Related papers (2020-04-17T12:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.