Forecasting Multi-Dimensional Processes over Graphs
- URL: http://arxiv.org/abs/2004.08260v1
- Date: Fri, 17 Apr 2020 14:14:50 GMT
- Title: Forecasting Multi-Dimensional Processes over Graphs
- Authors: Alberto Natali, Elvin Isufi, Geert Leus
- Abstract summary: We devise a new framework and propose new methodologies based on the graph vector autoregressive model.
More explicitly, we leverage product graphs to model the high-dimensional graph data.
Numerical results demonstrating the prediction of moving point clouds corroborate our findings.
- Score: 34.23046028631646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The forecasting of multi-variate time processes through graph-based
techniques has recently been addressed under the graph signal processing
framework. However, problems in the representation and the processing arise
when each time series carries a vector of quantities rather than a scalar one.
To tackle this issue, we devise a new framework and propose new methodologies
based on the graph vector autoregressive model. More explicitly, we leverage
product graphs to model the high-dimensional graph data and develop
multi-dimensional graph-based vector autoregressive models to forecast future
trends with a number of parameters that is independent of the number of time
series and a linear computational complexity. Numerical results demonstrating
the prediction of moving point clouds corroborate our findings.
Related papers
- Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data [49.77103348208835]
We define a novel Graph-Dictionary signal model, where a finite set of graphs characterizes relationships in data distribution through a weighted sum of their Laplacians.
We propose a framework to infer the graph dictionary representation from observed data, along with a bilinear generalization of the primal-dual splitting algorithm to solve the learning problem.
We exploit graph-dictionary representations in a motor imagery decoding task on brain activity data, where we classify imagined motion better than standard methods.
arXiv Detail & Related papers (2024-11-08T17:40:43Z) - Overcoming Order in Autoregressive Graph Generation [12.351817671944515]
Graph generation is a fundamental problem in various domains, including chemistry and social networks.
Recent work has shown that molecular graph generation using recurrent neural networks (RNNs) is advantageous compared to traditional generative approaches.
arXiv Detail & Related papers (2024-02-04T09:58:22Z) - Deep Prompt Tuning for Graph Transformers [55.2480439325792]
Fine-tuning is resource-intensive and requires storing multiple copies of large models.
We propose a novel approach called deep graph prompt tuning as an alternative to fine-tuning.
By freezing the pre-trained parameters and only updating the added tokens, our approach reduces the number of free parameters and eliminates the need for multiple model copies.
arXiv Detail & Related papers (2023-09-18T20:12:17Z) - Forecasting Graph Signals with Recursive MIMO Graph Filters [24.003433487241246]
Forecasting time series on graphs is a fundamental problem in graph signal processing.
Existing approaches resort to the use of product graphs to combine this multidimensional information, at the expense of creating a larger graph.
In this paper, we show the limitations of such approaches, and propose extensions to tackle them.
arXiv Detail & Related papers (2022-10-27T08:25:31Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
We show how to model the evolutionary and multi-scale interactions of time series.
In particular, we first provide a hierarchical graph structure cooperated with the dilated convolution to capture the scale-specific correlations.
A unified neural network is provided to integrate the components above to get the final prediction.
arXiv Detail & Related papers (2022-06-28T08:11:12Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Learning Sparse and Continuous Graph Structures for Multivariate Time
Series Forecasting [5.359968374560132]
Learning Sparse and Continuous Graphs for Forecasting (LSCGF) is a novel deep learning model that joins graph learning and forecasting.
In this paper, we propose a brand new method named Smooth Sparse Unit (SSU) to learn sparse and continuous graph adjacency matrix.
Our model achieves state-of-the-art performances with minor trainable parameters.
arXiv Detail & Related papers (2022-01-24T13:35:37Z) - A Study of Joint Graph Inference and Forecasting [13.340967777671565]
We study a recent class of models which uses graph neural networks (GNNs) to improve forecasting in multivariate time series.
By parameterizing a graph in a differentiable way, the models aim to improve forecasting quality.
arXiv Detail & Related papers (2021-09-10T16:34:35Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.