DMT: Dynamic Mutual Training for Semi-Supervised Learning
- URL: http://arxiv.org/abs/2004.08514v4
- Date: Wed, 11 May 2022 10:23:22 GMT
- Title: DMT: Dynamic Mutual Training for Semi-Supervised Learning
- Authors: Zhengyang Feng, Qianyu Zhou, Qiqi Gu, Xin Tan, Guangliang Cheng,
Xuequan Lu, Jianping Shi, Lizhuang Ma
- Abstract summary: Self-training methods usually rely on single model prediction confidence to filter low-confidence pseudo labels.
We propose mutual training between two different models by a dynamically re-weighted loss function, called Dynamic Mutual Training.
Our experiments show that DMT achieves state-of-the-art performance in both image classification and semantic segmentation.
- Score: 69.17919491907296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent semi-supervised learning methods use pseudo supervision as core idea,
especially self-training methods that generate pseudo labels. However, pseudo
labels are unreliable. Self-training methods usually rely on single model
prediction confidence to filter low-confidence pseudo labels, thus remaining
high-confidence errors and wasting many low-confidence correct labels. In this
paper, we point out it is difficult for a model to counter its own errors.
Instead, leveraging inter-model disagreement between different models is a key
to locate pseudo label errors. With this new viewpoint, we propose mutual
training between two different models by a dynamically re-weighted loss
function, called Dynamic Mutual Training (DMT). We quantify inter-model
disagreement by comparing predictions from two different models to dynamically
re-weight loss in training, where a larger disagreement indicates a possible
error and corresponds to a lower loss value. Extensive experiments show that
DMT achieves state-of-the-art performance in both image classification and
semantic segmentation. Our codes are released at
https://github.com/voldemortX/DST-CBC .
Related papers
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance.
We introduce Dynamic Regularization (DReg) which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off.
arXiv Detail & Related papers (2024-02-13T11:25:20Z) - Semi-Supervised 2D Human Pose Estimation Driven by Position
Inconsistency Pseudo Label Correction Module [74.80776648785897]
The previous method ignored two problems: (i) When conducting interactive training between large model and lightweight model, the pseudo label of lightweight model will be used to guide large models.
We propose a semi-supervised 2D human pose estimation framework driven by a position inconsistency pseudo label correction module (SSPCM)
To further improve the performance of the student model, we use the semi-supervised Cut-Occlude based on pseudo keypoint perception to generate more hard and effective samples.
arXiv Detail & Related papers (2023-03-08T02:57:05Z) - Pseudo-Label Noise Suppression Techniques for Semi-Supervised Semantic
Segmentation [21.163070161951868]
Semi-consuming learning (SSL) can reduce the need for large labelled datasets by incorporating unsupervised data into the training.
Current SSL approaches use an initially supervised trained model to generate predictions for unlabelled images, called pseudo-labels.
We use three mechanisms to control pseudo-label noise and errors.
arXiv Detail & Related papers (2022-10-19T09:46:27Z) - Understanding the Logit Distributions of Adversarially-Trained Deep
Neural Networks [6.439477789066243]
Adversarial defenses train deep neural networks to be invariant to the input perturbations from adversarial attacks.
Although adversarial training is successful at mitigating adversarial attacks, the behavioral differences between adversarially-trained (AT) models and standard models are still poorly understood.
We identify three logit characteristics essential to learning adversarial robustness.
arXiv Detail & Related papers (2021-08-26T19:09:15Z) - Self-Damaging Contrastive Learning [92.34124578823977]
Unlabeled data in reality is commonly imbalanced and shows a long-tail distribution.
This paper proposes a principled framework called Self-Damaging Contrastive Learning to automatically balance the representation learning without knowing the classes.
Our experiments show that SDCLR significantly improves not only overall accuracies but also balancedness.
arXiv Detail & Related papers (2021-06-06T00:04:49Z) - Two-phase Pseudo Label Densification for Self-training based Domain
Adaptation [93.03265290594278]
We propose a novel Two-phase Pseudo Label Densification framework, referred to as TPLD.
In the first phase, we use sliding window voting to propagate the confident predictions, utilizing intrinsic spatial-correlations in the images.
In the second phase, we perform a confidence-based easy-hard classification.
To ease the training process and avoid noisy predictions, we introduce the bootstrapping mechanism to the original self-training loss.
arXiv Detail & Related papers (2020-12-09T02:35:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.