論文の概要: A Quantum Network Node with Crossed Optical Fibre Cavities
- arxiv url: http://arxiv.org/abs/2004.08832v1
- Date: Sun, 19 Apr 2020 12:17:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-23 00:47:30.069186
- Title: A Quantum Network Node with Crossed Optical Fibre Cavities
- Title(参考訳): 交差光ファイバー共振器を有する量子ネットワークノード
- Authors: Manuel Brekenfeld, Dominik Niemietz, Joseph Dale Christesen, Gerhard
Rempe
- Abstract要約: 2つの量子チャネルに接続する量子ネットワークノードを開発する。
受動的、隠蔽され、高忠実な量子メモリとして機能する。
我々のノードは堅牢で、大きなファイバーベースのネットワークに自然に適合し、より多くのキャビティにスケールできるため、量子インターネットに対する明確な視点を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum networks provide unique possibilities for resolving open questions on
entanglement and promise innovative applications ranging from secure
communication to scalable computation. While two quantum nodes coupled by a
single channel are adequate for basic quantum communication tasks between two
parties, fully functional large-scale quantum networks require a web-like
architecture with multiply connected nodes. Efficient interfaces between
network nodes and channels can be implemented with optical cavities. Using two
optical fibre cavities coupled to one atom, we here realise a quantum network
node that connects to two quantum channels. It functions as a passive, heralded
and high-fidelity quantum memory that requires neither amplitude- and
phase-critical control fields nor error-prone feedback loops. Our node is
robust, fits naturally into larger fibre-based networks, can be scaled to more
cavities, and thus provides clear perspectives for a quantum internet including
qubit controlled quantum switches, routers, and repeaters.
- Abstract(参考訳): 量子ネットワークは、絡み合った問題を解くためのユニークな可能性を提供し、セキュアな通信からスケーラブルな計算まで、革新的なアプリケーションを約束する。
単一チャネルで結合された2つの量子ノードは、2つのパーティ間の基本的な量子通信タスクに適しているが、完全に機能的な大規模量子ネットワークは、多重接続ノードを持つWebのようなアーキテクチャを必要とする。
ネットワークノードとチャネル間の効率的なインターフェースは、光学キャビティで実装できる。
2つの光ファイバーキャビティを1つの原子に結合することで、2つの量子チャネルに接続する量子ネットワークノードを実現する。
パッシブ、ヘラルド、高忠実な量子メモリとして機能し、振幅・位相クリティカルな制御フィールドやエラーを起こしやすいフィードバックループを必要としない。
我々のノードはロバストで、大きなファイバーネットワークに自然に適合し、より多くのキャビティにスケールできるため、量子ビット制御された量子スイッチ、ルータ、リピータを含む量子インターネットに対して明確な視点を提供する。
関連論文リスト
- Realization of a crosstalk-free multi-ion node for long-distance quantum networking [0.0]
トラップされた原子イオンは、量子リピータノードを構築するための主要な物理プラットフォームの一つである。
長距離トラップイオン量子ネットワークでは、クロストークのないデュアルタイプの量子ビットを持つことが不可欠である。
本稿では,テレコム互換かつクロストークフリーな量子ネットワークノードの試作実装について報告する。
論文 参考訳(メタデータ) (2024-05-22T05:58:37Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
量子ネットワークは、セキュアな通信、ネットワーク量子コンピューティング、分散センシングのためのマルチパーティ量子リソースと多数のノードを接続し、供給する。
これらのネットワークのサイズが大きくなるにつれて、認証ツールはそれらの特性に関する質問に答える必要がある。
本稿では,ある量子ネットワークにおいて特定の相関が生成できないことを保証するための一般的な方法を示す。
論文 参考訳(メタデータ) (2024-03-04T19:00:00Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
本稿では,量子ネットワークの絡み合いに関する包括的調査を行う。
ネットワーク構造、作業原則、開発段階の詳細な概要を提供する。
また、アーキテクチャ設計、絡み合いに基づくネットワーク問題、標準化など、オープンな研究の方向性を強調している。
論文 参考訳(メタデータ) (2023-07-24T02:48:22Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
本稿では、入力量子ビットの秘密性と量子ゲートを識別するプログラムを必要とする新しい計算量子計算法を提案する。
本稿では,この課題に対する2サーバプロトコルを提案する。
また,従来の通信のみを用いて,複数のユーザがサーバにマルチパーティ量子計算を依頼する多パーティ量子計算についても論じる。
論文 参考訳(メタデータ) (2022-11-02T09:01:33Z) - Cavity-enhanced quantum network nodes [0.0]
将来の量子ネットワークは、量子チャネルで接続された量子プロセッサによって構成される。
光共振器が量子ネットワークノードをどのように促進するかを説明する。
論文 参考訳(メタデータ) (2022-05-30T18:50:35Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
我々は、セキュアな古典的リピータと量子セキュアな直接通信原理を組み合わせた量子ネットワークを考案する。
これらのネットワークでは、量子耐性アルゴリズムから引き出された暗号文を、ノードに沿ってQSDCを用いて送信する。
我々は,セキュアな古典的リピータに基づくハイブリッド量子ネットワークの実証実験を行った。
論文 参考訳(メタデータ) (2022-02-08T03:24:06Z) - Multiplexed telecom-band quantum networking with atom arrays in optical
cavities [0.3499870393443268]
マルチプレクサネットワークアーキテクチャにおいて,通信帯域光子を持つ中性原子配列からなる量子プロセッサのプラットフォームを提案する。
単一原子ではなく大きな原子配列を用いることで、双方向通信の有害な影響を緩和し、2つのノード間の絡み合いを2桁近く改善する。
論文 参考訳(メタデータ) (2021-07-09T15:05:57Z) - Aggregating Quantum Networks [0.0]
情報の単一パケットを分割して、異なるルート上でコヒーレントな方法で送信できるようになった。
このアグリゲーションにより、情報は量子ネットワークの異なる部分間でフォールトトレラントな方法で伝達される。
これは従来の通信網では利用できない量子現象である。
論文 参考訳(メタデータ) (2020-08-10T01:53:10Z) - Realising and compressing quantum circuits with quantum reservoir
computing [2.834895018689047]
量子ノードのランダムネットワークが量子コンピューティングの堅牢なハードウェアとしてどのように使用できるかを示す。
我々のネットワークアーキテクチャは、量子ノードの単一層のみを最適化することで量子演算を誘導する。
数量子状態においては、量子回路内の複数の量子ゲートのシーケンスは単一の演算で圧縮することができる。
論文 参考訳(メタデータ) (2020-03-21T03:29:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。