論文の概要: Machine Learning based Pallets Detection and Tracking in AGVs
- arxiv url: http://arxiv.org/abs/2004.08965v1
- Date: Sun, 19 Apr 2020 21:17:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 00:03:43.754335
- Title: Machine Learning based Pallets Detection and Tracking in AGVs
- Title(参考訳): 機械学習によるAGVのパレット検出と追跡
- Authors: Shengchang Zhang, Jie Xiang, Weijian Han
- Abstract要約: 深層学習に基づくパレット検出・追跡アーキテクチャを構築し,パレット検出・位置追跡を行った。
その結果,25%の誤り率,28.5%の偽陰性率,20%のトレーニング時間が得られた。
- 参考スコア(独自算出の注目度): 0.687531213383208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of automated guided vehicles (AGVs) has played a pivotal role in
manufacturing and distribution operations, providing reliable and efficient
product handling. In this project, we constructed a deep learning-based pallets
detection and tracking architecture for pallets detection and position
tracking. By using data preprocessing and augmentation techniques and
experiment with hyperparameter tuning, we achieved the result with 25%
reduction of error rate, 28.5% reduction of false negative rate, and 20%
reduction of training time.
- Abstract(参考訳): 自動誘導車両(AGV)の使用は、製造・流通業務において重要な役割を担い、信頼性と効率的な製品処理を提供している。
本研究では,パレット検出と位置追跡のための深層学習に基づくパレット検出・追跡アーキテクチャを構築した。
データ前処理と拡張技術とハイパーパラメータチューニングの実験により,25%の誤り率,28.5%の偽陰性率,20%のトレーニング時間の短縮を実現した。
関連論文リスト
- Efficient Transferability Assessment for Selection of Pre-trained Detectors [63.21514888618542]
本稿では,事前学習対象検出器の効率的な伝達性評価について検討する。
我々は、事前訓練された検出器の大規模で多様な動物園を含む検出器転送性ベンチマークを構築した。
実験により,本手法は伝達性の評価において,他の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-03-14T14:23:23Z) - Learning Lightweight Object Detectors via Multi-Teacher Progressive
Distillation [56.053397775016755]
本稿では,教師検出器の知識を学生に段階的に伝達する,知識蒸留への逐次的アプローチを提案する。
私たちの知識を最大限に活用するために、私たちはTransformerベースの教師検出器から、畳み込みベースの学生まで、初めて知識を抽出しました。
論文 参考訳(メタデータ) (2023-08-17T17:17:08Z) - Efficient Visual Fault Detection for Freight Train Braking System via
Heterogeneous Self Distillation in the Wild [8.062167870951706]
本稿では,検出精度と速度を確保するため,不均一な自己蒸留フレームワークを提案する。
我々は,学習効率を向上させるために,ラベル付近の値にネットワークを集中させる新たな損失関数を用いる。
我々のフレームワークは毎秒37フレーム以上を達成でき、従来の蒸留法と比較して高い精度を維持することができる。
論文 参考訳(メタデータ) (2023-07-03T01:27:39Z) - Pallet Detection from Synthetic Data Using Game Engines [0.0]
本研究は, ゲームエンジンを用いて, パレットセグメンテーションの文脈において, 機械学習のための合成トレーニングデータを生成することの実現可能性を評価することを目的とする。
我々は,3次元モデルから大量の注釈付きトレーニングデータを画素完全精度で自動生成できるツールを開発した。
論文 参考訳(メタデータ) (2023-04-07T11:54:40Z) - Efficient Decoder-free Object Detection with Transformers [75.00499377197475]
視覚変換器(ViT)は、物体検出アプローチのランドスケープを変化させている。
本稿では,デコーダフリー完全トランス(DFFT)オブジェクト検出器を提案する。
DFFT_SMALLは、トレーニングおよび推論段階で高い効率を達成する。
論文 参考訳(メタデータ) (2022-06-14T13:22:19Z) - Boosting Facial Expression Recognition by A Semi-Supervised Progressive
Teacher [54.50747989860957]
本稿では,信頼度の高いFERデータセットと大規模未ラベル表現画像を有効訓練に用いるための半教師付き学習アルゴリズム,Progressive Teacher (PT)を提案する。
RAF-DB と FERPlus を用いた実験により,RAF-DB で89.57% の精度で最先端の性能を実現する手法の有効性が検証された。
論文 参考訳(メタデータ) (2022-05-28T07:47:53Z) - SparseTT: Visual Tracking with Sparse Transformers [43.1666514605021]
長距離依存をモデル化するために設計された自己保持メカニズムがトランスフォーマーの成功の鍵となる。
本稿では,検索領域において最も関連性の高い情報に焦点をあてることで,少ない注意機構でこの問題を解消する。
本研究では,前景背景分類の精度と目標境界ボックスの回帰性を高めるために,二重頭部予測器を提案する。
論文 参考訳(メタデータ) (2022-05-08T04:00:28Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - STraTA: Self-Training with Task Augmentation for Better Few-shot
Learning [77.04780470527432]
タスク拡張による自己学習のためのSTraTAを提案する。
実験の結果,STraTAは12個のベンチマークでサンプル効率を大幅に向上できることがわかった。
分析の結果,タスク強化と自己学習は相補的かつ独立的に有効であることが判明した。
論文 参考訳(メタデータ) (2021-09-13T19:14:01Z) - Incremental Learning for End-to-End Automatic Speech Recognition [41.297106772785206]
エンドツーエンド自動音声認識(ASR)のための漸進的学習法を提案する。
本稿では, ASRモデルに対する新しい説明可能性に基づく知識蒸留を設計し, 応答に基づく知識蒸留と組み合わせて, 元のモデルの予測と予測の「理性」を維持する。
多段階連続訓練タスクの結果,提案手法は忘れを緩和する上で,既存の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-05-11T08:18:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。