論文の概要: On Advancements of the Forward-Forward Algorithm
- arxiv url: http://arxiv.org/abs/2504.21662v1
- Date: Wed, 30 Apr 2025 14:03:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 18:29:18.389995
- Title: On Advancements of the Forward-Forward Algorithm
- Title(参考訳): 前向きアルゴリズムの進歩について
- Authors: Mauricio Ortiz Torres, Markus Lange, Arne P. Raulf,
- Abstract要約: Forward-Forwardアルゴリズムは機械学習の研究で進化し、現実のアプリケーションを模倣するより複雑なタスクに取り組んでいる。
この結果から,畳み込みチャネルグループ化,学習率スケジュール,独立したブロック構造を組み合わせることで,改善が達成できることが示唆された。
我々は、21$pm$6%の低いテストエラー率と164,706から754,386までのトレーニング可能なパラメータ数を達成できる、より軽量なモデルを提示した。
- 参考スコア(独自算出の注目度): 0.6144680854063939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Forward-Forward algorithm has evolved in machine learning research, tackling more complex tasks that mimic real-life applications. In the last years, it has been improved by several techniques to perform better than its original version, handling a challenging dataset like CIFAR10 without losing its flexibility and low memory usage. We have shown in our results that improvements are achieved through a combination of convolutional channel grouping, learning rate schedules, and independent block structures during training that lead to a 20\% decrease in test error percentage. Additionally, to approach further implementations on low-capacity hardware projects we have presented a series of lighter models that achieve low test error percentages within (21$\pm$6)\% and number of trainable parameters between 164,706 and 754,386. This serving also as a basis for our future study on complete verification and validation of these kinds of neural networks.
- Abstract(参考訳): Forward-Forwardアルゴリズムは機械学習の研究で進化し、現実のアプリケーションを模倣するより複雑なタスクに取り組んでいる。
ここ数年、CIFAR10のような挑戦的なデータセットを柔軟性と低メモリ使用量を失うことなく処理し、元のバージョンよりも優れたパフォーマンスを実現するために、いくつかのテクニックによって改善されてきた。
実験結果から, 学習時間, 学習速度スケジュール, 独立したブロック構造を組み合わせることで, テストエラー率を20%減少させる効果が得られた。
さらに、低容量ハードウェアプロジェクトのさらなる実装にアプローチするために、21$\pm$6)\%の低いテストエラー率と164,706から754,386までのトレーニング可能なパラメータ数を達成できる、より軽量なモデルを提示しました。
このことは、この種のニューラルネットワークの完全な検証と検証に関する今後の研究の基盤としても役立ちます。
関連論文リスト
- Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
大規模で事前訓練されたモデルは、問題を解決するのに必要なタスク固有のデータの量を劇的に削減するが、多くの場合、ドメイン固有のニュアンスを箱から取り出すのに失敗する。
本稿では,NLPとマルチモーダル学習の最近の進歩を活用して,検索エンジン検索による事前学習モデルを強化する方法について述べる。
論文 参考訳(メタデータ) (2023-11-29T05:33:28Z) - Split-Boost Neural Networks [1.1549572298362787]
本稿では,スプリットブートと呼ばれるフィードフォワードアーキテクチャの革新的なトレーニング戦略を提案する。
このような新しいアプローチは、最終的に正規化項を明示的にモデル化することを避けることができる。
提案した戦略は、ベンチマーク医療保険設計問題内の実世界の(匿名化された)データセットでテストされる。
論文 参考訳(メタデータ) (2023-09-06T17:08:57Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
我々は、事前訓練されたモデルのゼロショット構造化プルーニングにより、性能を最小限に抑えて計算効率を向上させることができると主張している。
その結果,事前訓練されたモデルの畳み込み畳み込みフィルタは,低計算条件下で20%以上の性能向上をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-25T21:49:09Z) - Measuring Improvement of F$_1$-Scores in Detection of Self-Admitted
Technical Debt [5.750379648650073]
変換器(BERT)アーキテクチャからの双方向表現を利用した新しいアプローチによりSATDの検出を改善する。
トレーニングされたBERTモデルは、プロジェクト横断シナリオにおいて、20プロジェクト中19プロジェクトにおいて、以前のすべてのメソッドの最高のパフォーマンスよりも改善されていることが分かりました。
今後の研究では、SATDデータセットを多様化して、大きなBERTモデルの潜伏電力を最大化する方法について検討する予定である。
論文 参考訳(メタデータ) (2023-03-16T19:47:38Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
我々は,100以上の視覚的分類タスクのストリームからなるベンチマークであるNever-Ending VIsual-classification Stream (NEVIS'22)を紹介する。
分類に制限されているにもかかわらず、OCR、テクスチャ分析、シーン認識など、様々なタスクが生成される。
NEVIS'22は、タスクの規模と多様性のために、現在のシーケンシャルな学習アプローチに対して前例のない課題を提起している。
論文 参考訳(メタデータ) (2022-11-15T18:57:46Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - Convolutional Ensembling based Few-Shot Defect Detection Technique [0.0]
我々は,複数の事前学習された畳み込みモデルの知識ベースを用いる,複数ショット分類に対する新しいアプローチを提案する。
本フレームワークでは,パラメータの総数を劇的に削減しつつ,精度を高めるために,新しいアンサンブル手法を用いている。
論文 参考訳(メタデータ) (2022-08-05T17:29:14Z) - Continual Learning with Recursive Gradient Optimization [20.166372047414093]
RGOは反復的に更新された勾配で構成されており、データ再生なしで忘れを最小化するために勾配を変更する。
実験により、RGOは人気のある連続分類ベンチマークで大幅に性能が向上したことが示された。
論文 参考訳(メタデータ) (2022-01-29T07:50:43Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
我々は、非教師付きデータ拡張を定義するために、潜在空間における摂動が利用できることを示す。
トレーニングを通して分類器に適応する潜伏性対向性摂動が最も効果的であることが判明した。
論文 参考訳(メタデータ) (2021-08-18T03:20:00Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
確率的発散の選択における変動が、より高性能なILOアルゴリズムをもたらす可能性について検討する。
本稿では,提案する$f$-divergence最小化フレームワークの課題を軽減するために,逆模倣学習のための再パラメータ化手法を提案する。
経験的に、我々の設計選択は、ベースラインアプローチより優れ、低次元連続制御タスクにおける専門家のパフォーマンスとより密に適合するIOOアルゴリズムを許容することを示した。
論文 参考訳(メタデータ) (2020-06-18T19:04:09Z) - Passive Batch Injection Training Technique: Boosting Network Performance
by Injecting Mini-Batches from a different Data Distribution [39.8046809855363]
この研究は、元の入力データとは異なる分布から追加のデータを利用するディープニューラルネットワークの新しいトレーニング手法を提案する。
私たちの知る限りでは、畳み込みニューラルネットワーク(CNN)のトレーニングを支援するために、異なるデータ分散を利用する最初の研究である。
論文 参考訳(メタデータ) (2020-06-08T08:17:32Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。