Projection Hypothesis from the von Neumann-type Interaction with a
Bose-Einstein Condensate
- URL: http://arxiv.org/abs/2012.01886v5
- Date: Wed, 19 Jan 2022 22:09:00 GMT
- Title: Projection Hypothesis from the von Neumann-type Interaction with a
Bose-Einstein Condensate
- Authors: Eiji Konishi
- Abstract summary: We derive the projection hypothesis in projective quantum measurement by restricting the set of observables.
The key steps in the derivation are the return of the symmetry translation of this quantum coordinate to the inverse translation of the c-number spatial coordinate in quantum field theory.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive the projection hypothesis in projective quantum measurement by
restricting the set of observables. This projection hypothesis accompanies a
bipartite system with the von Neumann-type interaction, which consists of a
quantum mechanical system, with a meter variable to be measured, and a quantum
field theoretically macroscopic extended object, that is, a spatiotemporally
inhomogeneous Bose-Einstein condensate in quantum field theory with the quantum
coordinate, that is, the zero-energy Goldstone mode(s) of the spontaneously
broken global spatial translational symmetry. The key steps in the derivation
are the return of the symmetry translation of this quantum coordinate to the
inverse translation of the c-number spatial coordinate in quantum field theory
and the reduction of quantum fluctuations to classical fluctuations with
respect to the Goldstone mode(s) due to a superselection rule.
Related papers
- A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - On reconstruction of states from evolution induced by quantum dynamical
semigroups perturbed by covariant measures [50.24983453990065]
We show the ability to restore states of quantum systems from evolution induced by quantum dynamical semigroups perturbed by covariant measures.
Our procedure describes reconstruction of quantum states transmitted via quantum channels and as a particular example can be applied to reconstruction of photonic states transmitted via optical fibers.
arXiv Detail & Related papers (2023-12-02T09:56:00Z) - Quantum conformal symmetries for spacetimes in superposition [0.0]
We build an explicit quantum operator that can map states describing a quantum field on a superposition of spacetimes to states representing a quantum field with a superposition of masses on a Minkowski background.
It can be used to import the phenomenon of particle production in curved spacetime to its conformally equivalent counterpart, thus revealing new features in modified Minkowski spacetime.
arXiv Detail & Related papers (2022-06-30T18:00:02Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum
Dynamics of Cosmological Perturbations [0.0]
entropy of cosmological perturbations can be studied by treating them in the framework of squeezed quantum systems.
We compute the covariance matrix elements of the parametric quantum field and solve for the evolution of the density matrix elements.
We show explicitly why the entropy for the squeezed yet closed system is zero, but is proportional to the particle number produced.
arXiv Detail & Related papers (2021-10-06T13:43:00Z) - On quantum Hall effect, Kosterlitz-Thouless phase transition, Dirac
magnetic monopole, and Bohr-Sommerfeld quantization [0.0]
We address quantization phenomena in transport and vortex/precession-motion of low-dimensional systems.
We discuss how the self-consistent Bohr-Sommerfeld quantization condition permeates the relationships between the quantization of integer Hall effect.
arXiv Detail & Related papers (2020-09-16T17:57:14Z) - Phase space trajectories in quantum mechanics [0.0]
An adapted representation of quantum mechanics sheds new light on the relationship between quantum states and classical states.
In this approach the space of quantum states splits into a product of the state space of classical mechanics and a Hilbert space.
arXiv Detail & Related papers (2020-08-27T06:26:21Z) - A non-relativistic theory of quantum mechanics and gravity with local
modulus symmetry [5.194627108018866]
Inspired by the similarities between quantum field theory and general relativity, we set out to construct a non-relativistic theory of quantum mechanics and gravity.
Three quantum metric functions are defined to signify the kinematic change of quantum state brought by gravity.
New features in these equations offer potential mechanisms to account for the dark energy, the mass discrepancies in the universe, and the quantum state reduction of macroscopic objects.
arXiv Detail & Related papers (2020-08-18T05:36:11Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.