論文の概要: Image Retrieval using Multi-scale CNN Features Pooling
- arxiv url: http://arxiv.org/abs/2004.09695v2
- Date: Fri, 24 Apr 2020 11:19:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 06:55:33.921567
- Title: Image Retrieval using Multi-scale CNN Features Pooling
- Title(参考訳): マルチスケールCNN機能ポーリングを用いた画像検索
- Authors: Federico Vaccaro, Marco Bertini, Tiberio Uricchio, Alberto Del Bimbo
- Abstract要約: 本稿では,NetVLADに基づく新しいマルチスケールローカルプールと,サンプルの難易度に基づくトリプルトマイニング手法を利用して,効率的な画像表現を実現するエンド・ツー・エンドのトレーニング可能なネットワークアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 26.811290793232313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we address the problem of image retrieval by learning images
representation based on the activations of a Convolutional Neural Network. We
present an end-to-end trainable network architecture that exploits a novel
multi-scale local pooling based on NetVLAD and a triplet mining procedure based
on samples difficulty to obtain an effective image representation. Extensive
experiments show that our approach is able to reach state-of-the-art results on
three standard datasets.
- Abstract(参考訳): 本稿では,畳み込みニューラルネットワークのアクティベーションに基づいて画像表現を学習することで,画像検索の問題に対処する。
本稿では,NetVLADに基づく新しいマルチスケールローカルプールと,サンプルの難易度に基づくトリプルトマイニング手法を利用して,効率的な画像表現を実現するエンドツーエンドのトレーニング可能なネットワークアーキテクチャを提案する。
広範な実験によって、我々のアプローチは3つの標準データセットで最先端の結果に到達できることが示されました。
関連論文リスト
- Sparse Multi-baseline SAR Cross-modal 3D Reconstruction of Vehicle Targets [5.6680936716261705]
本稿では,光学画像と異種レンダリングとクロスモーダル監視を統合したクロスモーダル再構成ネットワーク(CMR-Net)を提案する。
シミュレーションデータのみに基づいてトレーニングされたCMR-Netは、公開可能なシミュレーションデータセットと実測データセットの両方で、高解像度の再構築機能を示す。
論文 参考訳(メタデータ) (2024-06-06T15:18:59Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
画像から3Dまでを1つの視点から解く新しいニューラルレンダリング手法を提案する。
提案手法では, 符号付き距離関数を表面表現として使用し, 幾何エンコードボリュームとハイパーネットワークスによる一般化可能な事前処理を取り入れた。
本実験は,一貫した結果と高速な生成による提案手法の利点を示す。
論文 参考訳(メタデータ) (2023-12-24T08:42:37Z) - DCN-T: Dual Context Network with Transformer for Hyperspectral Image
Classification [109.09061514799413]
複雑な撮像条件による空間変動のため,HSI分類は困難である。
本稿では,HSIを高品質な三スペクトル画像に変換する三スペクトル画像生成パイプラインを提案する。
提案手法は,HSI分類における最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-04-19T18:32:52Z) - A Triplet-loss Dilated Residual Network for High-Resolution
Representation Learning in Image Retrieval [0.0]
ローカライゼーションなどのいくつかのアプリケーションでは、画像検索が最初のステップとして使用される。
本論文では,トレーニング可能なパラメータが少ない,単純かつ効率的な画像検索システムを提案する。
提案手法は三重項損失を有する拡張残差畳み込みニューラルネットワークの利点である。
論文 参考訳(メタデータ) (2023-03-15T07:01:44Z) - Ablation study of self-supervised learning for image classification [0.0]
このプロジェクトは、画像認識のタスクのための畳み込みニューラルネットワーク(CNN)とトランスフォーマーネットワークの自己教師型トレーニングに焦点を当てている。
同じソース画像からの2つの拡張変換画像の類似性を最大化するために、異なるバックボーンを持つ単純なシアムネットワークを使用する。
論文 参考訳(メタデータ) (2021-12-04T09:59:01Z) - Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation [111.89519571205778]
そこで本研究では,深度推定のためのドメイン適応手法を提案する。
提案する2段階構造は,まず,ラベル付き合成画像を用いた深度推定ネットワークを教師付きで訓練する。
実験の結果,提案手法は実画像上でのネットワーク性能をかなりの差で向上させることがわかった。
論文 参考訳(メタデータ) (2021-09-24T08:11:34Z) - Investigating the Vision Transformer Model for Image Retrieval Tasks [1.375062426766416]
本稿では,事前に準備することなく画像検索タスクに効果的に適用できるプラグイン・アンド・プレイディスクリプタを提案する。
提案手法は,パラメータ調整のためのトレーニングデータを必要としないが,最近提案されたビジョントランスフォーマネットワークを利用する。
画像検索タスクにおいて、グローバルデリプタとローカルデリプタの使用は、過去数年間にわたって、畳み込みニューラルネットワーク(cnn)ベースの手法によって非常にうまく置き換えられてきた。
論文 参考訳(メタデータ) (2021-01-11T08:59:54Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - Identity Enhanced Residual Image Denoising [61.75610647978973]
我々は、アイデンティティマッピングモジュールのチェーンと、画像の復号化のための残像アーキテクチャの残像からなる、完全な畳み込みネットワークモデルを学ぶ。
提案するネットワークは,従来の最先端・CNNアルゴリズムよりも極めて高い数値精度と画像品質を実現している。
論文 参考訳(メタデータ) (2020-04-26T04:52:22Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。