A Quantum Klystron -- Controlling Quantum Systems with Modulated
Electron Beams
- URL: http://arxiv.org/abs/2004.10168v2
- Date: Tue, 13 Jul 2021 13:55:41 GMT
- Title: A Quantum Klystron -- Controlling Quantum Systems with Modulated
Electron Beams
- Authors: Dennis R\"atzel, Daniel Hartley, Osip Schwartz, Philipp Haslinger
- Abstract summary: We show that a temporally modulated free-space electron beam can be utilized for coherent control of quantum systems.
This approach may provide a pathway towards spectrally selective quantum control with nano-scale spatial resolution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coherent control of quantum transitions -- indispensable in quantum
technology -- generally relies on the interaction of quantum systems with
electromagnetic radiation. Here, we theoretically demonstrate that the
non-radiative electromagnetic near-field of a temporally modulated free-space
electron beam can be utilized for coherent control of quantum systems. We show
that such manipulation can be performed with only classical control over the
electron beam itself, and is readily realizable with current technology. This
approach may provide a pathway towards spectrally selective quantum control
with nano-scale spatial resolution, harnessing the small de Broglie wavelength
of electrons.
Related papers
- Characterization and Coherent Control of Spin Qubits with Modulated
Electron Beam and Resonator [0.0]
coherent dynamics and control of spin qubits are essential requirements for quantum technology.
A prominent challenge for coherent control of a spin qubit in a set of qubits is the destructive effect of the applied magnetic field on the coherent dynamics of neighbouring qubits.
We propose a novel scheme to characterize the coherent dynamics of these quantum systems and to coherently control them using a magnetic field.
arXiv Detail & Related papers (2023-03-31T10:29:26Z) - Coherent excitation of bound electron quantum state with quantum
electron wavepackets [1.5078167156049138]
We present a fully quantum model for excitation of a bound electron based on the free-electron bound-electron resonant interaction (FEBERI) scheme.
The study indicates a possibility of engineering the quantum state of a TLS by utilizing a beam of shaped QEWs.
arXiv Detail & Related papers (2022-06-22T01:56:14Z) - Quantum states interrogation using a pre-shaped free electron
wavefunction [1.5078167156049138]
We present a theory for interrogation of the quantum state of a two-level system (TLS) based on a free-electron - bound-electron resonant interaction scheme.
The exceptional advantage of this scheme over laser-based ones is the atomic-scale spatial resolution of addressing individual TLS targets.
arXiv Detail & Related papers (2021-11-25T15:37:56Z) - Electronic quantum trajectories with quantum nuclei [0.0]
We generalize the theory of electronic quantum trajectories to a fully quantum-mechanical treatment of the nuclei.
We show that the nuclei can be viewed as a quantum clock for the electronic motion and we develop a fully quantum-mechanical clock-dependent version of quantum hydrodynamics.
arXiv Detail & Related papers (2021-09-28T11:48:10Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Coherent control in the ground and optically excited state of an
ensemble of erbium dopants [55.41644538483948]
Ensembles of erbium dopants can realize quantum memories and frequency converters.
In this work, we use a split-ring microwave resonator to demonstrate such control in both the ground and optically excited state.
arXiv Detail & Related papers (2021-05-18T13:03:38Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Towards atomic-resolution quantum measurements with coherently-shaped
free electrons [0.0]
We propose a technique that leverages free electrons that are coherently-shaped by laser pulses to measure quantum coherence in materials.
We show how the energy spectrum of laser-shaped electrons enables measuring the qubit Block-sphere state and decoherence time.
Our scheme could be implemented in an ultrafast transmission electron microscope (UTEM), opening the way towards the full characterization of the state of quantum systems.
arXiv Detail & Related papers (2020-10-31T19:54:06Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.