論文の概要: Deep Learning for Time Series Forecasting: Tutorial and Literature
Survey
- arxiv url: http://arxiv.org/abs/2004.10240v2
- Date: Wed, 15 Jun 2022 20:16:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 06:13:08.723833
- Title: Deep Learning for Time Series Forecasting: Tutorial and Literature
Survey
- Title(参考訳): 時系列予測のためのディープラーニング:チュートリアルと文献調査
- Authors: Konstantinos Benidis, Syama Sundar Rangapuram, Valentin Flunkert,
Yuyang Wang, Danielle Maddix, Caner Turkmen, Jan Gasthaus, Michael
Bohlke-Schneider, David Salinas, Lorenzo Stella, Francois-Xavier Aubet,
Laurent Callot, Tim Januschowski
- Abstract要約: 深層学習に基づく予測手法は時系列予測や予測の多くの応用において選択の方法となっている。
この記事では、その分野の紹介と概要について説明する。
- 参考スコア(独自算出の注目度): 21.33538468735926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning based forecasting methods have become the methods of choice in
many applications of time series prediction or forecasting often outperforming
other approaches. Consequently, over the last years, these methods are now
ubiquitous in large-scale industrial forecasting applications and have
consistently ranked among the best entries in forecasting competitions (e.g.,
M4 and M5). This practical success has further increased the academic interest
to understand and improve deep forecasting methods. In this article we provide
an introduction and overview of the field: We present important building blocks
for deep forecasting in some depth; using these building blocks, we then survey
the breadth of the recent deep forecasting literature.
- Abstract(参考訳): 深層学習に基づく予測手法は、時系列予測や予測の多くの応用において、他の手法よりも優れている。
その結果、近年、これらの手法は大規模産業予測アプリケーションで広く普及し、一貫して予測競争(m4やm5など)において最高のエントリーにランクインしている。
この実践的な成功は、深い予測方法を理解し改善するための学術的な関心をさらに高めた。
本稿では、この分野の紹介と概要について述べる。我々は、深層予測のための重要なビルディングブロックを提示し、これらのビルディングブロックを用いて、最近の深層予測文献の幅を調査します。
関連論文リスト
- Forecasting with Deep Learning: Beyond Average of Average of Average Performance [0.393259574660092]
予測モデルの評価と比較の現在のプラクティスは、パフォーマンスを1つのスコアにまとめることに集中しています。
複数の視点からモデルを評価するための新しいフレームワークを提案する。
このフレームワークの利点は、最先端のディープラーニングアプローチと古典的な予測手法を比較して示す。
論文 参考訳(メタデータ) (2024-06-24T12:28:22Z) - Deep learning for precipitation nowcasting: A survey from the perspective of time series forecasting [4.5424061912112474]
本稿では,ディープラーニングを用いた時系列降水予測モデルの最近の進歩を概観する。
予測モデルを,将来のフレームを予測するためのアプローチに基づいて,テキスト再帰戦略とテキスト多重戦略に分類する。
筆者らは,現在,降水予測のための深層学習モデルの評価を行い,その限界と課題について議論し,いくつかの有望な研究方向性を示す。
論文 参考訳(メタデータ) (2024-06-07T12:07:09Z) - Learning-Augmented Algorithms with Explicit Predictors [67.02156211760415]
アルゴリズム設計の最近の進歩は、過去のデータと現在のデータから得られた機械学習モデルによる予測の活用方法を示している。
この文脈における以前の研究は、予測器が過去のデータに基づいて事前訓練され、ブラックボックスとして使用されるパラダイムに焦点を当てていた。
本研究では,予測器を解き,アルゴリズムの課題の中で生じる学習問題を統合する。
論文 参考訳(メタデータ) (2024-03-12T08:40:21Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
本稿では,長期時系列予測のための制約付き学習手法を提案する。
提案手法は, 予測ウィンドウ上でエラーを発生させながら, 時系列ベンチマークにおける競合平均性能を示すことを示すための, 実用的なプリマル・デュアルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:20:44Z) - ProbTS: Benchmarking Point and Distributional Forecasting across Diverse Prediction Horizons [23.9530536685668]
本稿では,基本的な予測ニーズを評価するための統一プラットフォームとして設計されたベンチマークツールであるProbTSを紹介する。
異なる予測条件から生じる特徴的データの特徴を識別する。
本稿では, 時系列予測の最新モデルについて検討し, 方法論的強度と弱点の分析も適用可能であることを明らかにする。
論文 参考訳(メタデータ) (2023-10-11T12:48:45Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - A Discussion on Generalization in Next-Activity Prediction [1.2289361708127877]
一般的に使用されるイベントログには、膨大な量のサンプルリークがあることが示されています。
我々は、ロバストな評価を設計するには、次の活動予測のトピックとより深い概念的関与が必要であると論じる。
論文 参考訳(メタデータ) (2023-09-18T09:42:36Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Challenges and approaches to time-series forecasting in data center
telemetry: A Survey [0.0]
この研究は、データセンターで収集されたテレメトリデータ予測のための様々な予測アプローチのレビューに重点を置いている。
我々は、よく知られた時系列予測技術の性能を要約し、評価しようと試みた。
論文 参考訳(メタデータ) (2021-01-11T22:36:21Z) - Forecasting: theory and practice [65.71277206849244]
本稿は、理論と予測の実践について、非体系的なレビューを提供する。
我々は、幅広い理論的、最先端のモデル、方法、原則、アプローチの概要を提供する。
そして、そのような理論概念が様々な実生活の文脈でどのように適用されるかを示す。
論文 参考訳(メタデータ) (2020-12-04T16:56:44Z) - From Goals, Waypoints & Paths To Long Term Human Trajectory Forecasting [54.273455592965355]
将来の軌道の不確実性は、(a)エージェントに知られているが、モデルに未知な情報源、例えば長期目標や(b)エージェントとモデルの両方に未知な情報源、例えば他のエージェントの意図や既約乱数不確定性などである。
我々は,長期目標における多モータリティと,経路ポイントや経路における多モータリティによるアレタリック不確実性を通じて,てんかん不確かさをモデル化する。
また,この二分法を実証するために,従来の作業よりも1分間,桁長の予測地平線を有する,新しい長期軌跡予測設定を提案する。
論文 参考訳(メタデータ) (2020-12-02T21:01:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。