Deep Learning for Screening COVID-19 using Chest X-Ray Images
- URL: http://arxiv.org/abs/2004.10507v4
- Date: Fri, 21 Aug 2020 20:17:35 GMT
- Title: Deep Learning for Screening COVID-19 using Chest X-Ray Images
- Authors: Sanhita Basu, Sushmita Mitra, Nilanjan Saha
- Abstract summary: We propose a new concept called domain extension transfer learning (DETL) to train deep neural networks.
We employ DETL, with pre-trained deep convolutional neural network, on a related large chest X-Ray dataset.
A 5-fold cross validation is performed to estimate the feasibility of using chest X-Rays to diagnose COVID-19.
- Score: 0.2062593640149623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the ever increasing demand for screening millions of prospective "novel
coronavirus" or COVID-19 cases, and due to the emergence of high false
negatives in the commonly used PCR tests, the necessity for probing an
alternative simple screening mechanism of COVID-19 using radiological images
(like chest X-Rays) assumes importance. In this scenario, machine learning (ML)
and deep learning (DL) offer fast, automated, effective strategies to detect
abnormalities and extract key features of the altered lung parenchyma, which
may be related to specific signatures of the COVID-19 virus. However, the
available COVID-19 datasets are inadequate to train deep neural networks.
Therefore, we propose a new concept called domain extension transfer learning
(DETL). We employ DETL, with pre-trained deep convolutional neural network, on
a related large chest X-Ray dataset that is tuned for classifying between four
classes \textit{viz.} $normal$, $pneumonia$, $other\_disease$, and $Covid-19$.
A 5-fold cross validation is performed to estimate the feasibility of using
chest X-Rays to diagnose COVID-19. The initial results show promise, with the
possibility of replication on bigger and more diverse data sets. The overall
accuracy was measured as $90.13\% \pm 0.14$. In order to get an idea about the
COVID-19 detection transparency, we employed the concept of Gradient Class
Activation Map (Grad-CAM) for detecting the regions where the model paid more
attention during the classification. This was found to strongly correlate with
clinical findings, as validated by experts.
Related papers
- A Deep Learning Approach for the Detection of COVID-19 from Chest X-Ray
Images using Convolutional Neural Networks [0.0]
COVID-19 (coronavirus) is an ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
The virus was first identified in mid-December 2019 in the Hubei province of Wuhan, China.
It has spread throughout the planet with more than 75.5 million confirmed cases and more than 1.67 million deaths.
arXiv Detail & Related papers (2022-01-24T21:12:25Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - Decision and Feature Level Fusion of Deep Features Extracted from Public
COVID-19 Data-sets [6.445605125467574]
The usage of chest radiography has been increasing in the early diagnosis of COVID-19.
A computer-aided diagnosis system for X-ray images based on convolutional neural networks (CNNs) has been proposed.
The experimental results show that the proposed approach has attained high COVID-19 detection performance.
arXiv Detail & Related papers (2020-11-17T09:36:21Z) - RANDGAN: Randomized Generative Adversarial Network for Detection of
COVID-19 in Chest X-ray [0.0]
COVID-19 spread across the globe at an immense rate has left healthcare systems incapacitated to diagnose and test patients at the needed rate.
Studies have shown promising results for detection of COVID-19 from viral bacterial pneumonia in chest X-rays.
In this study, we propose a randomized generative adversarial network (RANDGAN) that detects images of an unknown class (COVID-19) without the need for labels and training data.
arXiv Detail & Related papers (2020-10-06T15:58:09Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Fused Deep Convolutional Neural Network for Precision Diagnosis of
COVID-19 Using Chest X-Ray Images [0.0]
We propose a computer-aided diagnosis (CAD) to accurately classify chest X-ray scans of COVID-19 and normal subjects by fine-tuning several neural networks.
Using k-fold cross-validation and a bagging ensemble, we achieve an accuracy of 99.7% and a sensitivity of 100%.
arXiv Detail & Related papers (2020-09-15T02:27:20Z) - Multi-Task Driven Explainable Diagnosis of COVID-19 using Chest X-ray
Images [61.24431480245932]
COVID-19 Multi-Task Network is an automated end-to-end network for COVID-19 screening.
We manually annotate the lung regions of 9000 frontal chest radiographs taken from ChestXray-14, CheXpert and a consolidated COVID-19 dataset.
This database will be released to the research community.
arXiv Detail & Related papers (2020-08-03T12:52:23Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
COVID-19 is a respiratory syndrome that resembles pneumonia.
Scientists, researchers and healthcare experts are contributing for faster and automated diagnosis of COVID-19 by identifying pulmonary infections.
This article presents the random oversampling and weighted class loss function approach for unbiased fine-tuned learning (transfer learning) in various state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-04-23T10:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.