論文の概要: Cooperative Perception with Deep Reinforcement Learning for Connected
Vehicles
- arxiv url: http://arxiv.org/abs/2004.10927v1
- Date: Thu, 23 Apr 2020 01:44:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 09:20:37.194627
- Title: Cooperative Perception with Deep Reinforcement Learning for Connected
Vehicles
- Title(参考訳): 連結車両の深部強化学習による協調的知覚
- Authors: Shunsuke Aoki, Takamasa Higuchi, Onur Altintas
- Abstract要約: 本研究では, 周辺物体の検出精度を高めるために, 深層強化学習を用いた協調認識方式を提案する。
本手法は、車両通信網におけるネットワーク負荷を軽減し、通信信頼性を高める。
- 参考スコア(独自算出の注目度): 7.7003495898919265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sensor-based perception on vehicles are becoming prevalent and important to
enhance the road safety. Autonomous driving systems use cameras, LiDAR, and
radar to detect surrounding objects, while human-driven vehicles use them to
assist the driver. However, the environmental perception by individual vehicles
has the limitations on coverage and/or detection accuracy. For example, a
vehicle cannot detect objects occluded by other moving/static obstacles. In
this paper, we present a cooperative perception scheme with deep reinforcement
learning to enhance the detection accuracy for the surrounding objects. By
using the deep reinforcement learning to select the data to transmit, our
scheme mitigates the network load in vehicular communication networks and
enhances the communication reliability. To design, test, and verify the
cooperative perception scheme, we develop a Cooperative & Intelligent Vehicle
Simulation (CIVS) Platform, which integrates three software components: traffic
simulator, vehicle simulator, and object classifier. We evaluate that our
scheme decreases packet loss and thereby increases the detection accuracy by up
to 12%, compared to the baseline protocol.
- Abstract(参考訳): 車両に対するセンサーによる認識が道路安全を高めるために普及し、重要になっている。
自動運転システムは、カメラ、ライダー、レーダーを使って周囲の物体を検知し、人間運転の車両はドライバーを補助する。
しかし、個々の車両による環境認識は、カバレッジや検出精度に制限がある。
例えば、車両は、他の移動・静止障害物によって遮られる物体を検知できない。
本稿では,周辺物体の検出精度を高めるために,深層強化学習を用いた協調的知覚手法を提案する。
深層強化学習を用いて送信データを選択することにより,車両間通信ネットワークにおけるネットワーク負荷を軽減し,通信信頼性を向上させる。
協調知覚スキームの設計、テスト、検証のために、交通シミュレーター、車両シミュレーター、オブジェクト分類器の3つのソフトウェアコンポーネントを統合する協調運転シミュレーション(civs)プラットフォームを開発した。
提案方式はパケットロスを減少させ,検出精度をベースラインプロトコルと比較して最大12%向上させる。
関連論文リスト
- A neural-network based anomaly detection system and a safety protocol to protect vehicular network [0.0]
この論文は、車車間通信を可能にすることにより、道路の安全性と効率を向上させるために、CITS(Cooperative Intelligent Transport Systems)の使用に対処する。
安全性を確保するため、論文では、Long Short-Term Memory (LSTM)ネットワークを用いた機械学習に基づくミスビヘイビア検出システム(MDS)を提案する。
論文 参考訳(メタデータ) (2024-11-11T14:15:59Z) - Improving automatic detection of driver fatigue and distraction using
machine learning [0.0]
運転者の疲労と注意をそらした運転は交通事故の重要な要因である。
本稿では,視覚に基づくアプローチと機械学習に基づくアプローチを用いて,疲労と注意をそらした運転行動の同時検出手法を提案する。
論文 参考訳(メタデータ) (2024-01-04T06:33:46Z) - Selective Communication for Cooperative Perception in End-to-End
Autonomous Driving [8.680676599607123]
協調認識のための新しい選択的コミュニケーションアルゴリズムを提案する。
提案アルゴリズムは, 従来研究されてきた安全クリティカル運転シナリオシミュレーションにおいて, ランダム選択法よりも高い成功率を示す。
論文 参考訳(メタデータ) (2023-05-26T18:13:17Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Edge-Aided Sensor Data Sharing in Vehicular Communication Networks [8.67588704947974]
車両・車間通信と車両・車間通信を併用した車両ネットワークにおけるセンサデータ共有と融合を考察する。
本稿では、エッジサーバが車両からセンサ計測データを収集・キャッシュするBidirectional Feedback Noise Estimation (BiFNoE) 手法を提案する。
認識精度は平均80%向上し, アップリンクは12kbps, ダウンリンク帯域は28kbpsであった。
論文 参考訳(メタデータ) (2022-06-17T16:30:56Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Collaborative 3D Object Detection for Automatic Vehicle Systems via
Learnable Communications [8.633120731620307]
本稿では,3つのコンポーネントから構成される新しい3次元オブジェクト検出フレームワークを提案する。
実験結果と帯域使用量分析により,本手法は通信コストと計算コストを削減できることを示した。
論文 参考訳(メタデータ) (2022-05-24T07:17:32Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
ディープラーニングに基づく最先端の3Dオブジェクト検出器は、有望な精度を示しているが、ドメインの慣用性に過度に適合する傾向がある。
対象領域の擬似ラベルの検出器を微調整することで,このギャップを大幅に削減する新たな学習手法を提案する。
5つの自律運転データセットにおいて、これらの擬似ラベル上の検出器を微調整することで、新しい運転環境への領域ギャップを大幅に減らすことを示す。
論文 参考訳(メタデータ) (2021-03-26T01:18:11Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and
Prediction [74.42961817119283]
車両間通信(V2V)を用いて、自動運転車の知覚と運動予測性能を向上させる。
複数の車両から受信した情報をインテリジェントに集約することで、異なる視点から同じシーンを観察することができる。
論文 参考訳(メタデータ) (2020-08-17T17:58:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。