Robust and Fast Holonomic Quantum Gates with Encoding on Superconducting
Circuits
- URL: http://arxiv.org/abs/2004.11132v1
- Date: Thu, 23 Apr 2020 13:26:18 GMT
- Title: Robust and Fast Holonomic Quantum Gates with Encoding on Superconducting
Circuits
- Authors: Tao Chen, Pu Shen, and Zheng-Yuan Xue
- Abstract summary: We propose a simplified implementation of universal holonomic quantum gates on superconducting circuits.
Our scheme is more robust than the conventional ones, and thus provides a promising alternative strategy for scalable fault-tolerant quantum computation.
- Score: 4.354697470999286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-fidelity and robust quantum manipulation is the key for scalable quantum
computation. Therefore, due to the intrinsic operational robustness, quantum
manipulation induced by geometric phases is one of the promising candidates.
However, the longer gate time for geometric operations and more
physical-implementation difficulties hinder its practical and wide
applications. Here, we propose a simplified implementation of universal
holonomic quantum gates on superconducting circuits with experimentally
demonstrated techniques, which can remove the two main challenges by
introducing the time-optimal control into the construction of quantum gates.
Remarkably, our scheme is also based on a decoherence-free subspace encoding,
with minimal physical qubit resource, which can further immune to error caused
by qubit-frequency drift, which is regarded as the main error source for large
scale superconducting circuits. Meanwhile, we deliberately design the quantum
evolution to eliminate gate error caused by unwanted leakage sources.
Therefore, our scheme is more robust than the conventional ones, and thus
provides a promising alternative strategy for scalable fault-tolerant quantum
computation.
Related papers
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Time-optimal universal quantum gates on superconducting circuits [1.5512702032483539]
We propose a scheme to realize universal quantum gates on superconducting qubits in a two-dimensional square lattice configuration.
In order to reduce the influence of the dephasing error, decoherence-free subspace encoding is also incorporated in our physical implementation.
arXiv Detail & Related papers (2023-01-09T13:41:56Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Robust Nonadiabatic Holonomic Quantum Gates on Decoherence-Protected
Qubits [4.18804572788063]
We propose a scheme for quantum manipulation by combining the geometric phase approach with the dynamical correction technique.
Our scheme is implemented on the superconducting circuits, which also simplifies previous implementations.
arXiv Detail & Related papers (2021-10-06T14:39:52Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Ultrafast Holonomic Quantum Gates [4.354697470999286]
We propose a nonadiabatic holonomic quantum scheme with detuned interactions on $Delta$-type three-level system.
Our numerical simulations show that the gate robustness is also stronger than previous schemes.
We present an implementation of our proposal on superconducting quantum circuits, with a decoherence-free subspace encoding.
arXiv Detail & Related papers (2021-08-03T14:31:38Z) - Noncyclic nonadiabatic holonomic quantum gates via shortcuts to
adiabaticity [5.666193021459319]
We propose a fast and robust scheme to construct high-fidelity holonomic quantum gates for universal quantum systems via shortcuts to adiabaticity.
Our scheme is readily realizable in physical system currently pursued for implementation of quantum computation.
arXiv Detail & Related papers (2021-05-28T15:23:24Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Noncyclic Geometric Quantum Gates with Smooth Paths via Invariant-based
Shortcuts [4.354697470999286]
We propose a scheme to realize geometric quantum gates with noncyclic and nonadiabatic evolution via invariant-based shortcuts.
Our scheme provides a promising way to realize high-fidelity fault-tolerant quantum gates for scalable quantum computation.
arXiv Detail & Related papers (2021-02-01T15:05:29Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.