Ultrafast Holonomic Quantum Gates
- URL: http://arxiv.org/abs/2108.01531v2
- Date: Wed, 6 Oct 2021 15:06:27 GMT
- Title: Ultrafast Holonomic Quantum Gates
- Authors: Pu Shen, Tao Chen, and Zheng-Yuan Xue
- Abstract summary: We propose a nonadiabatic holonomic quantum scheme with detuned interactions on $Delta$-type three-level system.
Our numerical simulations show that the gate robustness is also stronger than previous schemes.
We present an implementation of our proposal on superconducting quantum circuits, with a decoherence-free subspace encoding.
- Score: 4.354697470999286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computation based on geometric phase is generally believed to be more
robust against certain errors or noises than the conventional dynamical
strategy. However, the gate error caused by the decoherence effect is
inevitable, and thus faster gate operations are highly desired. Here, we
propose a nonadiabatic holonomic quantum computation (NHQC) scheme with detuned
interactions on $\Delta$-type three-level system, which combines the
time-optimal control technique with the time-independent detuning adjustment to
further accelerate universal gate operations, {so that the gate-time can be
greatly shortened within the hardware limitation}, and thus high-fidelity gates
can be obtained. Meanwhile, our numerical simulations show that the gate
robustness is also stronger than previous schemes. Finally, we present an
implementation of our proposal on superconducting quantum circuits, with a
decoherence-free subspace encoding, based on the experimentally demonstrated
parametrically tunable coupling technique, which simplifies previous
investigations. Therefore, our protocol provides a more promising alternative
for future fault-tolerant quantum computation.
Related papers
- Nonadiabatic geometric quantum gates with on-demand trajectories [2.5539863252714636]
We propose a general protocol for constructing geometric quantum gates with on-demand trajectories.
Our scheme adopts reverse engineering of the target Hamiltonian using smooth pulses.
Because a particular geometric gate can be induced by various different trajectories, we can further optimize the gate performance.
arXiv Detail & Related papers (2024-01-20T06:57:36Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Accelerated super-robust nonadiabatic holonomic quantum gates [4.5867495327952845]
In previous conventional schemes, the states of the calculation subspace have always leaked to the noncomputation subspace.
We propose a solution to the problem without the severe limitation of the much longer gate time.
Our numerical simulations indicate that the decoherence-induced gate errors of our scheme are greatly decreased.
arXiv Detail & Related papers (2023-04-04T08:19:33Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Robust Nonadiabatic Holonomic Quantum Gates on Decoherence-Protected
Qubits [4.18804572788063]
We propose a scheme for quantum manipulation by combining the geometric phase approach with the dynamical correction technique.
Our scheme is implemented on the superconducting circuits, which also simplifies previous implementations.
arXiv Detail & Related papers (2021-10-06T14:39:52Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Noncyclic Geometric Quantum Gates with Smooth Paths via Invariant-based
Shortcuts [4.354697470999286]
We propose a scheme to realize geometric quantum gates with noncyclic and nonadiabatic evolution via invariant-based shortcuts.
Our scheme provides a promising way to realize high-fidelity fault-tolerant quantum gates for scalable quantum computation.
arXiv Detail & Related papers (2021-02-01T15:05:29Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Robust and Fast Holonomic Quantum Gates with Encoding on Superconducting
Circuits [4.354697470999286]
We propose a simplified implementation of universal holonomic quantum gates on superconducting circuits.
Our scheme is more robust than the conventional ones, and thus provides a promising alternative strategy for scalable fault-tolerant quantum computation.
arXiv Detail & Related papers (2020-04-23T13:26:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.