A Cycle GAN Approach for Heterogeneous Domain Adaptation in Land Use
Classification
- URL: http://arxiv.org/abs/2004.11245v1
- Date: Wed, 22 Apr 2020 08:16:18 GMT
- Title: A Cycle GAN Approach for Heterogeneous Domain Adaptation in Land Use
Classification
- Authors: Claire Voreiter (OBELIX), Jean-Christophe Burnel (OBELIX), Pierre
Lassalle (CNES), Marc Spigai (TAS), Romain Hugues (TAS), Nicolas Courty (FT
R&D, OBELIX)
- Abstract summary: We present a novel method to deal with such cases, based on a modified cycleGAN version that incorporates classification losses and a metric space alignment term.
We demonstrate its power on a land use classification tasks, with images from both Google Earth and Sentinel-2.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of remote sensing and more specifically in Earth Observation,
new data are available every day, coming from different sensors. Leveraging on
those data in classification tasks comes at the price of intense labelling
tasks that are not realistic in operational settings. While domain adaptation
could be useful to counterbalance this problem, most of the usual methods
assume that the data to adapt are comparable (they belong to the same metric
space), which is not the case when multiple sensors are at stake. Heterogeneous
domain adaptation methods are a particular solution to this problem. We present
a novel method to deal with such cases, based on a modified cycleGAN version
that incorporates classification losses and a metric space alignment term. We
demonstrate its power on a land use classification tasks, with images from both
Google Earth and Sentinel-2.
Related papers
- Semi Supervised Heterogeneous Domain Adaptation via Disentanglement and Pseudo-Labelling [4.33404822906643]
Semi-supervised domain adaptation methods leverage information from a source labelled domain to generalize over a scarcely labelled target domain.
Such a setting is denoted as Semi-Supervised Heterogeneous Domain Adaptation (SSHDA)
We introduce SHeDD (Semi-supervised Heterogeneous Domain Adaptation via Disentanglement) an end-to-end neural framework tailored to learning a target domain.
arXiv Detail & Related papers (2024-06-20T08:02:49Z) - Self-supervised Domain-agnostic Domain Adaptation for Satellite Images [18.151134198549574]
We propose an self-supervised domain-agnostic domain adaptation (SS(DA)2) method to perform domain adaptation without such a domain definition.
We first design a contrastive generative adversarial loss to train a generative network to perform image-to-image translation between any two satellite image patches.
Then, we improve the generalizability of the downstream models by augmenting the training data with different testing spectral characteristics.
arXiv Detail & Related papers (2023-09-20T07:37:23Z) - Implicit neural representation for change detection [15.741202788959075]
Most commonly used approaches to detecting changes in point clouds are based on supervised methods.
We propose an unsupervised approach that comprises two components: Implicit Neural Representation (INR) for continuous shape reconstruction and a Gaussian Mixture Model for categorising changes.
We apply our method to a benchmark dataset comprising simulated LiDAR point clouds for urban sprawling.
arXiv Detail & Related papers (2023-07-28T09:26:00Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - Assessing Domain Gap for Continual Domain Adaptation in Object Detection [28.323952459461243]
detector must adapt to changes in appearance caused by environmental factors such as time of day, weather, and seasons.
Continually adapting the detector to incorporate these changes is a promising solution, but it can be computationally costly.
Our proposed approach is to selectively adapt the detector only when necessary, using new data that does not have the same distribution as the current training data.
arXiv Detail & Related papers (2023-02-21T02:07:13Z) - Task-specific Inconsistency Alignment for Domain Adaptive Object
Detection [38.027790951157705]
Detectors trained with massive labeled data often exhibit dramatic performance degradation in certain scenarios with data distribution gap.
We propose Task-specific Inconsistency Alignment (TIA), by developing a new alignment mechanism in separate task spaces.
TIA demonstrates superior results on various scenarios to the previous state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:36:33Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain.
We build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets.
arXiv Detail & Related papers (2021-06-10T06:32:30Z) - Phase Consistent Ecological Domain Adaptation [76.75730500201536]
We focus on the task of semantic segmentation, where annotated synthetic data are aplenty, but annotating real data is laborious.
The first criterion, inspired by visual psychophysics, is that the map between the two image domains be phase-preserving.
The second criterion aims to leverage ecological statistics, or regularities in the scene which are manifest in any image of it, regardless of the characteristics of the illuminant or the imaging sensor.
arXiv Detail & Related papers (2020-04-10T06:58:03Z) - Spatial Attention Pyramid Network for Unsupervised Domain Adaptation [66.75008386980869]
Unsupervised domain adaptation is critical in various computer vision tasks.
We design a new spatial attention pyramid network for unsupervised domain adaptation.
Our method performs favorably against the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-03-29T09:03:23Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
This paper proposes a novel coarse-to-fine feature adaptation approach to cross-domain object detection.
At the coarse-grained stage, foreground regions are extracted by adopting the attention mechanism, and aligned according to their marginal distributions.
At the fine-grained stage, we conduct conditional distribution alignment of foregrounds by minimizing the distance of global prototypes with the same category but from different domains.
arXiv Detail & Related papers (2020-03-23T13:40:06Z) - Differential Treatment for Stuff and Things: A Simple Unsupervised
Domain Adaptation Method for Semantic Segmentation [105.96860932833759]
State-of-the-art approaches prove that performing semantic-level alignment is helpful in tackling the domain shift issue.
We propose to improve the semantic-level alignment with different strategies for stuff regions and for things.
In addition to our proposed method, we show that our method can help ease this issue by minimizing the most similar stuff and instance features between the source and the target domains.
arXiv Detail & Related papers (2020-03-18T04:43:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.