論文の概要: Quantum Machine Learning using Gaussian Processes with Performant
Quantum Kernels
- arxiv url: http://arxiv.org/abs/2004.11280v1
- Date: Thu, 23 Apr 2020 16:09:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 08:20:07.094668
- Title: Quantum Machine Learning using Gaussian Processes with Performant
Quantum Kernels
- Title(参考訳): 量子カーネルを用いたガウス過程を用いた量子機械学習
- Authors: Matthew Otten, Im\`ene R. Goumiri, Benjamin W. Priest, George F.
Chapline, and Michael D. Schneider
- Abstract要約: 量子コンピュータを用いて1次元および多次元回帰の機械学習タスクを実行する。
我々は、シミュレーションとハードウェアの両方において、量子デバイスが、古典的なインスピレーションよりも少なくとも何倍も優れた機械学習タスクを実行できることを実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers have the opportunity to be transformative for a variety of
computational tasks. Recently, there have been proposals to use the
unsimulatably of large quantum devices to perform regression, classification,
and other machine learning tasks with quantum advantage by using kernel
methods. While unsimulatably is a necessary condition for quantum advantage in
machine learning, it is not sufficient, as not all kernels are equally
effective. Here, we study the use of quantum computers to perform the machine
learning tasks of one- and multi-dimensional regression, as well as
reinforcement learning, using Gaussian Processes. By using approximations of
performant classical kernels enhanced with extra quantum resources, we
demonstrate that quantum devices, both in simulation and on hardware, can
perform machine learning tasks at least as well as, and many times better than,
the classical inspiration. Our informed kernel design demonstrates a path
towards effectively utilizing quantum devices for machine learning tasks.
- Abstract(参考訳): 量子コンピュータは、様々な計算タスクに変換される機会がある。
近年,大規模な量子デバイスを用いて回帰,分類,その他の機械学習タスクをカーネル手法を用いて量子的に有利に行う方法が提案されている。
機械学習における量子アドバンテージの必要条件は非同化可能であるが、全てのカーネルが等しく有効であるわけではないため、十分ではない。
本稿では,ガウス過程を用いて,一次元および多次元回帰の機械学習タスクを行うための量子コンピュータの利用と強化学習について検討する。
量子資源を余分に増強した高性能な古典的カーネルの近似を用いることで、量子デバイスはシミュレーションとハードウェアの両方において、少なくとも機械学習のタスクを、古典的インスピレーションよりも何倍も良く実行できることを実証する。
我々の情報カーネル設計は、機械学習タスクに量子デバイスを効果的に活用するための道筋を示す。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
我々は中性原子アナログ量子コンピュータの量子力学を利用してデータを処理する量子貯水池学習アルゴリズムを開発した。
アルゴリズムを実験的に実装し、機械学習タスクの様々なカテゴリで競合性能を達成する。
本研究は,従来の量子相関を有効機械学習に活用する可能性を示すものである。
論文 参考訳(メタデータ) (2024-07-02T18:00:00Z) - Quantum Machine Learning: Quantum Kernel Methods [0.0]
カーネルメソッドは古典的な機械学習において強力で一般的なテクニックである。
量子コンピュータ上でしか効率的に計算できない量子特徴空間を使用することで、量子上の優位性を導出することができる。
データ依存型投影量子カーネルは、古典的カーネルに対して大きな利点をもたらすことが示されている。
論文 参考訳(メタデータ) (2024-05-02T23:45:29Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Expressive Quantum Supervised Machine Learning using Kerr-nonlinear
Parametric Oscillators [0.0]
変分量子アルゴリズム(VQA)を用いた量子機械学習は、ノイズのある中間スケール量子(NISQ)時代の実用的なアルゴリズムとして積極的に研究されている。
近年の研究では、古典的なデータを量子回路に繰り返しエンコードするデータ再アップロードが、表現力のある量子機械学習モデルを得るために必要であることが示されている。
我々は、Kerrnon Parametric Hilberts (KPO) を別の有望な量子コンピューティングデバイスとして用いて量子機械学習を提案する。
論文 参考訳(メタデータ) (2023-05-01T07:01:45Z) - A Herculean task: Classical simulation of quantum computers [4.12322586444862]
本研究は、量子コンピュータの進化を特定の操作下でエミュレートする最先端の数値シミュレーション手法について概説する。
我々は、代替手法を簡潔に言及しながら、主流のステートベクターとテンソルネットワークのパラダイムに焦点を当てる。
論文 参考訳(メタデータ) (2023-02-17T13:59:53Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
本稿では、教師なし、教師なし、強化学習アルゴリズムにおけるディープラーニングとカーネル手法の使用について述べる。
我々は、微分可能プログラミング、生成モデル、機械学習に対する統計的アプローチ、量子機械学習など、より専門的なトピックについて議論する。
論文 参考訳(メタデータ) (2022-04-08T17:48:59Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
小型電子フォノン系のゲートベース量子シミュレーションにおける絶対的資源コストについて考察する。
我々は、弱い電子-フォノン結合と強い電子-フォノン結合の両方のためのIBM量子ハードウェアの実験を行う。
デバイスノイズは大きいが、近似回路再コンパイルを用いることで、正確な対角化に匹敵する電流量子コンピュータ上で電子フォノンダイナミクスを得る。
論文 参考訳(メタデータ) (2022-02-16T19:00:00Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。