Adaptive Forgetting Curves for Spaced Repetition Language Learning
- URL: http://arxiv.org/abs/2004.11327v1
- Date: Thu, 23 Apr 2020 17:22:38 GMT
- Title: Adaptive Forgetting Curves for Spaced Repetition Language Learning
- Authors: Ahmed Zaidi, Andrew Caines, Russell Moore, Paula Buttery and Andrew
Rice
- Abstract summary: We explore a variety of forgetting curve models incorporating psychological and linguistic features.
We use these models to predict the probability of word recall by learners of English as a second language.
We find that word complexity is a highly informative feature which may be successfully learned by a neural network model.
- Score: 6.396596455749813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The forgetting curve has been extensively explored by psychologists,
educationalists and cognitive scientists alike. In the context of Intelligent
Tutoring Systems, modelling the forgetting curve for each user and knowledge
component (e.g. vocabulary word) should enable us to develop optimal revision
strategies that counteract memory decay and ensure long-term retention. In this
study we explore a variety of forgetting curve models incorporating
psychological and linguistic features, and we use these models to predict the
probability of word recall by learners of English as a second language. We
evaluate the impact of the models and their features using data from an online
vocabulary teaching platform and find that word complexity is a highly
informative feature which may be successfully learned by a neural network
model.
Related papers
- Trustworthy Alignment of Retrieval-Augmented Large Language Models via Reinforcement Learning [84.94709351266557]
We focus on the trustworthiness of language models with respect to retrieval augmentation.
We deem that retrieval-augmented language models have the inherent capabilities of supplying response according to both contextual and parametric knowledge.
Inspired by aligning language models with human preference, we take the first step towards aligning retrieval-augmented language models to a status where it responds relying merely on the external evidence.
arXiv Detail & Related papers (2024-10-22T09:25:21Z) - Reverse-Engineering the Reader [43.26660964074272]
We introduce a novel alignment technique in which we fine-tune a language model to implicitly optimize the parameters of a linear regressor.
Using words as a test case, we evaluate our technique across multiple model sizes and datasets.
We find an inverse relationship between psychometric power and a model's performance on downstream NLP tasks as well as its perplexity on held-out test data.
arXiv Detail & Related papers (2024-10-16T23:05:01Z) - Beyond the Labels: Unveiling Text-Dependency in Paralinguistic Speech Recognition Datasets [0.5999777817331317]
This paper critically evaluates the prevalent assumption that machine learning models genuinely learn to identify paralinguistic traits.
By examining the lexical overlap in these datasets and testing the performance of machine learning models, we expose significant text-dependency in trait-labeling.
arXiv Detail & Related papers (2024-03-12T15:54:32Z) - Retentive or Forgetful? Diving into the Knowledge Memorizing Mechanism
of Language Models [49.39276272693035]
Large-scale pre-trained language models have shown remarkable memorizing ability.
Vanilla neural networks without pre-training have been long observed suffering from the catastrophic forgetting problem.
We find that 1) Vanilla language models are forgetful; 2) Pre-training leads to retentive language models; 3) Knowledge relevance and diversification significantly influence the memory formation.
arXiv Detail & Related papers (2023-05-16T03:50:38Z) - Towards Scalable Adaptive Learning with Graph Neural Networks and
Reinforcement Learning [0.0]
We introduce a flexible and scalable approach towards the problem of learning path personalization.
Our model is a sequential recommender system based on a graph neural network.
Our results demonstrate that it can learn to make good recommendations in the small-data regime.
arXiv Detail & Related papers (2023-05-10T18:16:04Z) - Offline RL for Natural Language Generation with Implicit Language Q
Learning [87.76695816348027]
Large language models can be inconsistent when it comes to completing user specified tasks.
We propose a novel RL method, that combines both the flexible utility framework of RL with the ability of supervised learning.
In addition to empirically validating ILQL, we present a detailed empirical analysis situations where offline RL can be useful in natural language generation settings.
arXiv Detail & Related papers (2022-06-05T18:38:42Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Dependency-based Mixture Language Models [53.152011258252315]
We introduce the Dependency-based Mixture Language Models.
In detail, we first train neural language models with a novel dependency modeling objective.
We then formulate the next-token probability by mixing the previous dependency modeling probability distributions with self-attention.
arXiv Detail & Related papers (2022-03-19T06:28:30Z) - VidLanKD: Improving Language Understanding via Video-Distilled Knowledge
Transfer [76.3906723777229]
We present VidLanKD, a video-language knowledge distillation method for improving language understanding.
We train a multi-modal teacher model on a video-text dataset, and then transfer its knowledge to a student language model with a text dataset.
In our experiments, VidLanKD achieves consistent improvements over text-only language models and vokenization models.
arXiv Detail & Related papers (2021-07-06T15:41:32Z) - A Visuospatial Dataset for Naturalistic Verb Learning [18.654373173232205]
We introduce a new dataset for training and evaluating grounded language models.
Our data is collected within a virtual reality environment and is designed to emulate the quality of language data to which a pre-verbal child is likely to have access.
We use the collected data to compare several distributional semantics models for verb learning.
arXiv Detail & Related papers (2020-10-28T20:47:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.