論文の概要: Tip the Balance: Improving Exploration of Balanced Crossover Operators
by Adaptive Bias
- arxiv url: http://arxiv.org/abs/2004.11331v1
- Date: Thu, 23 Apr 2020 17:26:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 09:20:52.297936
- Title: Tip the Balance: Improving Exploration of Balanced Crossover Operators
by Adaptive Bias
- Title(参考訳): Tip the Balance: 適応バイアスによる平衡クロスオーバー演算子の探索の改善
- Authors: Luca Manzoni, Luca Mariot, Eva Tuba
- Abstract要約: 遺伝的アルゴリズム(GA)におけるバランスの取れたクロスオーバー演算子の使用は、子孫として生成された二進文字列が両親と同じハミング重みを持つことを保証している。
この手法は,探索空間のサイズを小さくするが,GAが探索することが困難になることが多い。
本論文では、対向型クロスオーバー演算子に適応バイアス戦略を適用することにより、この問題を考察した。
- 参考スコア(独自算出の注目度): 2.610470075814367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of balanced crossover operators in Genetic Algorithms (GA) ensures
that the binary strings generated as offsprings have the same Hamming weight of
the parents, a constraint which is sought in certain discrete optimization
problems. Although this method reduces the size of the search space, the
resulting fitness landscape often becomes more difficult for the GA to explore
and to discover optimal solutions. This issue has been studied in this paper by
applying an adaptive bias strategy to a counter-based crossover operator that
introduces unbalancedness in the offspring with a certain probability, which is
decreased throughout the evolutionary process. Experiments show that improving
the exploration of the search space with this adaptive bias strategy is
beneficial for the GA performances in terms of the number of optimal solutions
found for the balanced nonlinear Boolean functions problem.
- Abstract(参考訳): 遺伝的アルゴリズム(ga)におけるバランス付きクロスオーバー演算子の使用により、子孫として生成される二進文字列が親と同じハミングウェイトを持つことが保証される。
この方法は探索空間のサイズを小さくするが、結果として得られる適合環境はgaが探索し最適な解を見つけるのがより困難になる。
本論文では, 進化過程を通じて減少する子孫の不均衡性を導入した対向型クロスオーバー演算子に適応バイアス戦略を適用することにより, この問題を考察した。
この適応バイアス戦略を用いて探索空間の探索を改善することは、バランスの取れた非線形ブール関数問題に対する最適解の数の観点からGA性能に有益であることを示す。
関連論文リスト
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic
Algorithm for Solving Combinatorial Optimization Problems [1.8434042562191815]
遺伝的アルゴリズム(GA)は最適化問題の解法における効率性で知られている。
本稿では遺伝子工学の概念からインスピレーションを得るため,遺伝子工学アルゴリズム(GEA)と呼ばれる新しいメタヒューリスティックアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-28T13:05:30Z) - The FAIRy Tale of Genetic Algorithms [1.0957528713294875]
Findable、Accessible、Interoperable、Reusable(FAIR)のデータ原則を拡張して、アルゴリズムの遺伝的および再使用を可能にしました。
我々は,GAの方法論的展開と変種について概説し,適切なソースの再現や発見を困難にしている。
この作業は、多数の機械学習アルゴリズム/メソッドに拡張することができる。
論文 参考訳(メタデータ) (2023-04-29T11:36:09Z) - Designing Biological Sequences via Meta-Reinforcement Learning and
Bayesian Optimization [68.28697120944116]
メタ強化学習を用いて自己回帰生成モデルを訓練し、選択のための有望なシーケンスを提案する。
我々は,データのサブセットのサンプリングによって誘導されるMDPの分布に対する最適ポリシーを求める問題として,この問題を提起する。
このようなアンサンブルに対するメタラーニングは,報酬の過小評価に対して頑健であり,競争的な結果が得られることを示す。
論文 参考訳(メタデータ) (2022-09-13T18:37:27Z) - The Influence of Local Search over Genetic Algorithms with Balanced
Representations [2.610470075814367]
地域検索を追加することで、実際に人口の多様性が増すことが示される。
これらの知見を、Boolean関数の問題に対するフィットネスランドスケープ分析に関する最近の結果とリンクする。
論文 参考訳(メタデータ) (2022-06-22T10:59:26Z) - Clipped Stochastic Methods for Variational Inequalities with
Heavy-Tailed Noise [64.85879194013407]
単調なVIPと非単調なVIPの解法における信頼度に対数的依存を持つ最初の高確率結果が証明された。
この結果は光尾の場合で最もよく知られたものと一致し,非単調な構造問題に新鮮である。
さらに,多くの実用的な定式化の勾配雑音が重く,クリッピングによりSEG/SGDAの性能が向上することを示す。
論文 参考訳(メタデータ) (2022-06-02T15:21:55Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
本稿では,SGDA と SCO の最終的な収束保証として,期待されるコヒーレンシティ条件を導入し,その利点を説明する。
定常的なステップサイズを用いた場合、両手法の線形収束性を解の近傍に証明する。
我々の収束保証は任意のサンプリングパラダイムの下で保たれ、ミニバッチの複雑さに関する洞察を与える。
論文 参考訳(メタデータ) (2021-06-30T18:32:46Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - A Rank based Adaptive Mutation in Genetic Algorithm [0.0]
本稿では,染色体ランクを用いた突然変異確率生成の代替手法を提案する。
単純な遺伝的アルゴリズム(SGA)と一定の突然変異確率と限られた資源制約内での適応的アプローチとの比較実験を行った。
論文 参考訳(メタデータ) (2021-04-18T12:41:33Z) - The Strength of Nesterov's Extrapolation in the Individual Convergence
of Nonsmooth Optimization [0.0]
ネステロフの外挿は、非滑らかな問題に対して勾配降下法の個人収束を最適にする強さを持つことを証明している。
提案手法は,設定の非滑らかな損失を伴って正規化学習タスクを解くためのアルゴリズムの拡張である。
本手法は,大規模な1-正規化ヒンジロス学習問題の解法として有効である。
論文 参考訳(メタデータ) (2020-06-08T03:35:41Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。