論文の概要: What Can Be Transferred: Unsupervised Domain Adaptation for Endoscopic
Lesions Segmentation
- arxiv url: http://arxiv.org/abs/2004.11500v1
- Date: Fri, 24 Apr 2020 00:57:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 03:15:21.948245
- Title: What Can Be Transferred: Unsupervised Domain Adaptation for Endoscopic
Lesions Segmentation
- Title(参考訳): 内視鏡的病変分画に対する非教師なし領域適応法
- Authors: Jiahua Dong, Yang Cong, Gan Sun, Bineng Zhong, Xiaowei Xu
- Abstract要約: 内視鏡的病変分割のための2つの相補的モジュールを含む新しい教師なしセマンティックトランスファーモデルを開発した。
特に、T_Dは、残留転写可能性を認識するボトルネックを介して、医療病変の伝達可能な視覚情報を翻訳する場所に焦点を当てている。
T_Fは、さまざまな病変のトランスファー可能なセマンティック機能を拡張し、自動的に非トランスファー可能な表現を無視する方法を強調している。
- 参考スコア(独自算出の注目度): 51.7837386041158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation has attracted growing research attention on
semantic segmentation. However, 1) most existing models cannot be directly
applied into lesions transfer of medical images, due to the diverse appearances
of same lesion among different datasets; 2) equal attention has been paid into
all semantic representations instead of neglecting irrelevant knowledge, which
leads to negative transfer of untransferable knowledge. To address these
challenges, we develop a new unsupervised semantic transfer model including two
complementary modules (i.e., T_D and T_F ) for endoscopic lesions segmentation,
which can alternatively determine where and how to explore transferable
domain-invariant knowledge between labeled source lesions dataset (e.g.,
gastroscope) and unlabeled target diseases dataset (e.g., enteroscopy).
Specifically, T_D focuses on where to translate transferable visual information
of medical lesions via residual transferability-aware bottleneck, while
neglecting untransferable visual characterizations. Furthermore, T_F highlights
how to augment transferable semantic features of various lesions and
automatically ignore untransferable representations, which explores
domain-invariant knowledge and in return improves the performance of T_D. To
the end, theoretical analysis and extensive experiments on medical endoscopic
dataset and several non-medical public datasets well demonstrate the
superiority of our proposed model.
- Abstract(参考訳): 教師なしドメイン適応はセマンティックセグメンテーションの研究の注目を集めている。
しかし、
1) 既存のモデルの多くは,異なるデータセット間で同一の病変の出現が異なるため,医療画像の病変移動に直接適用することはできない。
2)無関係な知識を無視するのではなく,すべての意味表現に平等な注意が払われた。
これらの課題に対処するため,内視鏡的病変分割のための2つの相補的モジュール(T_DとT_F)を含む新しい教師なしセマンティックトランスファーモデルを開発した。
特に、T_Dは、伝達不能な視覚的特徴を無視しながら、残留転写可能性を認識するボトルネックを介して、医療病変の伝達可能な視覚情報を翻訳する場所に焦点を当てている。
さらに、T_Fは、様々な病変の伝達可能な意味的特徴を拡大し、自動的に変換不可能な表現を無視する方法を強調している。
最後に, 医学的内視鏡的データセットと非医学的公開データセットに関する理論的解析と広範な実験を行い, 提案モデルの有用性を実証した。
関連論文リスト
- Unsupervised Domain Adaptation for Brain Vessel Segmentation through
Transwarp Contrastive Learning [46.248404274124546]
教師なし領域適応(Unsupervised domain adapt, UDA)は、ラベル付きソース分布とラベル付きターゲット分布との整合を目的とし、ドメイン不変な予測モデルを得る。
本稿では,ラベル付きソースと非ラベル付きターゲット分布の領域間ギャップを狭めるための,UDAのための簡易かつ強力なコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-23T10:01:22Z) - Domain-invariant Clinical Representation Learning by Bridging Data
Distribution Shift across EMR Datasets [16.317118701435742]
適切な診断を行い、パーソナライズされた治療計画を設計する上で、効果的な予後モデルが期待されている。
疾患の初期段階では、限られたデータ収集と臨床経験に加えて、プライバシと倫理の懸念から、参照のためのデータ可用性が制限される可能性がある。
本稿では、ソースデータセットからターゲットデータセットへの遷移モデルを構築するためのドメイン不変表現学習手法を紹介する。
論文 参考訳(メタデータ) (2023-10-11T18:32:21Z) - Deep Angiogram: Trivializing Retinal Vessel Segmentation [1.8479315677380455]
本研究では,無関係な特徴をフィルタリングし,深部血管造影という潜像を合成するコントラスト型変分自動エンコーダを提案する。
合成ネットワークの一般化性は、画像コントラストとノイズの特徴の変動に敏感なモデルを実現するコントラスト損失によって改善される。
論文 参考訳(メタデータ) (2023-07-01T06:13:10Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
視覚変換器(ViT)は一般的な画像の分類性能が高いにもかかわらず、このタスクには適用されていない。
ViTは、畳み込みではなくパッチベースの自己アテンションに依存しており、CNNとは対照的に、ローカル接続に関する事前の知識は存在しない。
以上の結果から,ViTとCNNのパフォーマンスはViTの利点に匹敵するものの,DeiTsはトレーニング用に適度に大規模なデータセットが利用可能であれば,前者よりも優れることがわかった。
論文 参考訳(メタデータ) (2022-08-17T09:07:45Z) - AlignTransformer: Hierarchical Alignment of Visual Regions and Disease
Tags for Medical Report Generation [50.21065317817769]
本稿では,Align Hierarchical Attention (AHA)とMulti-Grained Transformer (MGT)モジュールを含むAlign Transformerフレームワークを提案する。
パブリックなIU-XrayとMIMIC-CXRデータセットの実験は、AlignTransformerが2つのデータセットの最先端メソッドと競合する結果が得られることを示している。
論文 参考訳(メタデータ) (2022-03-18T13:43:53Z) - FetReg: Placental Vessel Segmentation and Registration in Fetoscopy
Challenge Dataset [57.30136148318641]
Fetoscopy Laser Photocoagulation はツイン・ツー・ツイン・トランスフュージョン症候群(TTTS)の治療に広く用いられている治療法である
これにより、プロシージャ時間と不完全アブレーションが増加し、持続的なTTTSが生じる可能性がある。
コンピュータ支援による介入は、ビデオモザイクによって胎児の視野を広げ、船体ネットワークのより良い視覚化を提供することによって、これらの課題を克服するのに役立つかもしれない。
本稿では,長期フェトスコープビデオからドリフトフリーモザイクを作成することを目的とした,胎児環境のための汎用的でロバストなセマンティックセマンティックセグメンテーションとビデオモザイクアルゴリズムを開発するための大規模マルチセントデータセットを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:14:27Z) - Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions
Segmentation [79.58311369297635]
異なるデータセットにまたがるトランスファー可能なドメイン不変知識を探索できる,新しい弱い教師付き病巣移動フレームワークを提案する。
wasserstein quantified transferability frameworkは、広い範囲の転送可能なコンテキスト依存性を強調するために開発されている。
新規な自己監督型擬似ラベル生成器は、送信困難かつ転送容易なターゲットサンプルの両方に対して、確実な擬似ピクセルラベルを等しく提供するように設計されている。
論文 参考訳(メタデータ) (2020-12-08T02:26:03Z) - CSCL: Critical Semantic-Consistent Learning for Unsupervised Domain
Adaptation [42.226842513334184]
本稿では,ドメインワイド分布とカテゴリワイド分布の相違を緩和する,新しいクリティカルセマンティック・一貫性学習モデルを提案する。
具体的には、伝達不能な知識を無視しながら、伝達可能なドメインに関する知識を強調するために、クリティカルトランスファーベースの敵対的フレームワークを設計する。
論文 参考訳(メタデータ) (2020-08-24T14:12:04Z) - Manifolds for Unsupervised Visual Anomaly Detection [79.22051549519989]
トレーニングで必ずしも異常に遭遇しない教師なしの学習方法は、非常に有用です。
ジャイロプレーン層を用いた立体投影による超球形変分オートエンコーダ(VAE)を開発した。
工業用AIシナリオにおける実世界の実用性を実証し、精密製造および検査における視覚異常ベンチマークの最先端結果を示す。
論文 参考訳(メタデータ) (2020-06-19T20:41:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。