論文の概要: Manifolds for Unsupervised Visual Anomaly Detection
- arxiv url: http://arxiv.org/abs/2006.11364v1
- Date: Fri, 19 Jun 2020 20:41:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 03:30:18.109181
- Title: Manifolds for Unsupervised Visual Anomaly Detection
- Title(参考訳): 教師なし視覚異常検出のためのマニフォールド
- Authors: Louise Naud and Alexander Lavin
- Abstract要約: トレーニングで必ずしも異常に遭遇しない教師なしの学習方法は、非常に有用です。
ジャイロプレーン層を用いた立体投影による超球形変分オートエンコーダ(VAE)を開発した。
工業用AIシナリオにおける実世界の実用性を実証し、精密製造および検査における視覚異常ベンチマークの最先端結果を示す。
- 参考スコア(独自算出の注目度): 79.22051549519989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomalies are by definition rare, thus labeled examples are very limited or
nonexistent, and likely do not cover unforeseen scenarios. Unsupervised
learning methods that don't necessarily encounter anomalies in training would
be immensely useful. Generative vision models can be useful in this regard but
do not sufficiently represent normal and abnormal data distributions. To this
end, we propose constant curvature manifolds for embedding data distributions
in unsupervised visual anomaly detection. Through theoretical and empirical
explorations of manifold shapes, we develop a novel hyperspherical Variational
Auto-Encoder (VAE) via stereographic projections with a gyroplane layer - a
complete equivalent to the Poincar\'e VAE. This approach with manifold
projections is beneficial in terms of model generalization and can yield more
interpretable representations. We present state-of-the-art results on visual
anomaly benchmarks in precision manufacturing and inspection, demonstrating
real-world utility in industrial AI scenarios. We further demonstrate the
approach on the challenging problem of histopathology: our unsupervised
approach effectively detects cancerous brain tissue from noisy whole-slide
images, learning a smooth, latent organization of tissue types that provides an
interpretable decisions tool for medical professionals.
- Abstract(参考訳): 異常は定義上稀であり、ラベル付き例は非常に限定的か存在せず、予期せぬシナリオをカバーしない可能性が高い。
トレーニングの異常に必ずしも遭遇しない教師なしの学習方法は、非常に有用です。
生成的視覚モデルは、この点において有用であるが、正規および異常なデータ分布を十分に表していない。
この目的のために、教師なし視覚異常検出にデータ分布を埋め込むための定数曲率多様体を提案する。
多様体形状の理論的および経験的な探索を通じて、ジャイロプレーン層を持つ立体射影による新しい超球形変分オートエンコーダ(VAE)を開発した。
この射影によるアプローチはモデル一般化の観点から有益であり、より解釈可能な表現が得られる。
工業用AIシナリオにおける実世界の実用性を実証し、精密製造および検査における視覚異常ベンチマークの最先端結果を示す。
我々はさらに, 組織病理学の難解な問題に対するアプローチを実証する: 教師なしのアプローチは, ノイズの多い全身スライド画像から, 癌性脳組織を効果的に検出し, 医療専門家に解釈可能な決定ツールを提供する, 滑らかで潜伏した組織タイプの組織化を学習する。
関連論文リスト
- GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
拡散モデルは、特定のノイズを付加したテスト画像の通常の画像を再構成する傾向がある。
世界的視点から見ると、異なる異常による画像再構成の難しさは不均一である。
本稿では,非教師付き異常検出のためのグローバルかつ局所的な適応拡散モデル(GLADと略す)を提案する。
論文 参考訳(メタデータ) (2024-06-11T17:27:23Z) - Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts [25.629973843455495]
Generalist Anomaly Detection (GAD)は、ターゲットデータにさらなるトレーニングを加えることなく、さまざまなアプリケーションドメインからさまざまなデータセットの異常を検出するために一般化可能な、単一の検出モデルをトレーニングすることを目的としている。
InCTRLと呼ばれるGADのための文脈内残差学習モデルを学習する新しい手法を提案する。
InCTRLは最高のパフォーマーであり、最先端の競合手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-03-11T08:07:46Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - Unsupervised Anomaly Detection via Nonlinear Manifold Learning [0.0]
異常は、残りのデータから著しく逸脱するサンプルであり、その検出は機械学習モデルを構築する上で大きな役割を果たす。
非線形多様体学習に基づく頑健で効率的かつ解釈可能な手法を導入し,教師なし設定における異常を検出する。
論文 参考訳(メタデータ) (2023-06-15T18:48:10Z) - Confidence-Aware and Self-Supervised Image Anomaly Localisation [7.099105239108548]
本稿では,ゆるやかな特徴的局所性制約による確率的推論の近似を支援する,自己教師付きシングルクラストレーニング戦略について論じる。
提案手法は,複数のオフ・オブ・ディストリビューション(OOD)検出モデルに統合されている。
論文 参考訳(メタデータ) (2023-03-23T12:48:47Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
本稿では,PRN(Prototypeal Residual Network)というフレームワークを提案する。
PRNは、異常領域の分割マップを正確に再構築するために、異常領域と正常パターンの間の様々なスケールとサイズの特徴的残差を学習する。
異常を拡大・多様化するために,見かけの相違と外観の相違を考慮に入れた様々な異常発生戦略を提示する。
論文 参考訳(メタデータ) (2022-12-05T05:03:46Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Constrained Contrastive Distribution Learning for Unsupervised Anomaly
Detection and Localisation in Medical Images [23.79184121052212]
UAD(Unsupervised Anomaly Detection)は、通常の(すなわち健康的な)画像でのみ1クラスの分類器を学習する。
異常検出のための制約コントラスト分布学習(Constrained Contrastive Distribution Learning for Anomaly Detection, CCD)を提案する。
本手法は,3種類の大腸内視鏡および底部検診データセットにおいて,最先端のUADアプローチよりも優れている。
論文 参考訳(メタデータ) (2021-03-05T01:56:58Z) - Self-Taught Semi-Supervised Anomaly Detection on Upper Limb X-rays [11.859913430860335]
監視されたディープネットワークは、放射線学者による多数の注釈を取る。
私たちのアプローチの合理性は、ラベルのないデータを活用するためにタスクのプリテキストタスクを使用することです。
本手法は、非監視および自己監視の異常検出設定におけるベースラインを上回っていることを示した。
論文 参考訳(メタデータ) (2021-02-19T12:32:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。