論文の概要: A Review of Privacy-preserving Federated Learning for the
Internet-of-Things
- arxiv url: http://arxiv.org/abs/2004.11794v2
- Date: Tue, 8 Sep 2020 14:08:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 03:18:19.493152
- Title: A Review of Privacy-preserving Federated Learning for the
Internet-of-Things
- Title(参考訳): インターネットのためのプライバシ保護フェデレーション学習の概観
- Authors: Christopher Briggs, Zhong Fan, Peter Andras
- Abstract要約: この研究は、分散データ上で機械学習を実行するためのアプローチとして、フェデレーション学習をレビューした。
ユーザ生成データのプライバシ保護と,データ転送に伴う通信コストの削減を目的としている。
フェデレート学習に適用される様々な手法の長所と短所を同定する。
- 参考スコア(独自算出の注目度): 3.3517146652431378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Internet-of-Things (IoT) generates vast quantities of data, much of it
attributable to individuals' activity and behaviour. Gathering personal data
and performing machine learning tasks on this data in a central location
presents a significant privacy risk to individuals as well as challenges with
communicating this data to the cloud. However, analytics based on machine
learning and in particular deep learning benefit greatly from large amounts of
data to develop high-performance predictive models. This work reviews federated
learning as an approach for performing machine learning on distributed data
with the goal of protecting the privacy of user-generated data as well as
reducing communication costs associated with data transfer. We survey a wide
variety of papers covering communication-efficiency, client heterogeneity and
privacy preserving methods that are crucial for federated learning in the
context of the IoT. Throughout this review, we identify the strengths and
weaknesses of different methods applied to federated learning and finally, we
outline future directions for privacy preserving federated learning research,
particularly focusing on IoT applications.
- Abstract(参考訳): internet-of-things(iot)は膨大な量のデータを生成し、その多くが個人の行動や行動に起因している。
個人データを集め、中央の場所で機械学習タスクを実行することは、個人に重大なプライバシーリスクをもたらし、このデータをクラウドに通信する上での課題となる。
しかし、機械学習や特にディープラーニングに基づく分析は、大量のデータから大きな恩恵を受け、高性能な予測モデルを開発する。
本稿では,ユーザ生成データのプライバシ保護とデータ転送に関わる通信コストの低減を目標として,分散データ上でマシンラーニングを実行するためのアプローチとして,フェデレート学習をレビューする。
iotのコンテキストにおいて,連合学習に不可欠なコミュニケーション効率,クライアントの不均一性,プライバシ保護手法など,さまざまな論文を調査した。
このレビューを通じて、フェデレーション学習に適用されるさまざまな方法の長所と短所を特定し、最後に、フェデレーション学習研究、特にIoTアプリケーションに焦点を当てた、プライバシー保護のための今後の方向性を概説する。
関連論文リスト
- FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
フェデレーション・インストラクション・チューニング(FedIT)は、複数のデータ所有者間で協調的なトレーニングを統合することで、有望なソリューションである。
FedITは、インストラクショナルデータの不足や、トレーニングデータ抽出攻撃への露出リスクなどの制限に直面している。
本稿では,FewFedPITを提案する。このFewFedPITは,フェデレートされた数ショット学習のプライバシー保護とモデル性能を同時に向上する。
論文 参考訳(メタデータ) (2024-03-10T08:41:22Z) - Using Decentralized Aggregation for Federated Learning with Differential
Privacy [0.32985979395737774]
フェデレートラーニング(FL)は、データをローカルノードに保持することで、ある程度のプライバシーを提供する。
本研究は、ベンチマークデータセットを用いて、差分プライバシー(DP)を用いたFL実験環境をデプロイする。
論文 参考訳(メタデータ) (2023-11-27T17:02:56Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
我々は,グラフ機械学習のプライバシ保護手法の見直しに重点を置いている。
まずプライバシ保護グラフデータを生成する方法を検討する。
次に,プライバシ保護情報を送信する方法について述べる。
論文 参考訳(メタデータ) (2023-07-10T04:30:23Z) - A Survey on Blockchain-Based Federated Learning and Data Privacy [1.0499611180329802]
フェデレーテッド・ラーニング(Federated Learning)は、複数のクライアントがローカルな計算能力とモデルの伝達を活用して協力できるようにする、分散機械学習パラダイムである。
一方、フェデレーション学習は、ストレージ、転送、共有に使用されるプライバシー保護機構が欠如しているため、データ漏洩の欠点がある。
この調査は、ブロックチェーンベースのフェデレーション学習アーキテクチャで採用されているさまざまなデータプライバシメカニズムのパフォーマンスとセキュリティを比較することを目的としている。
論文 参考訳(メタデータ) (2023-06-29T23:43:25Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
局所的な学習とプライベートな集中学習の協調は、総合的に有用であり、精度とプライバシのトレードオフを改善していることを示す。
合成および実世界のデータセットに関する実験により理論的結果について述べる。
論文 参考訳(メタデータ) (2022-02-10T20:44:44Z) - DQRE-SCnet: A novel hybrid approach for selecting users in Federated
Learning with Deep-Q-Reinforcement Learning based on Spectral Clustering [1.174402845822043]
実世界の機密データに基づく機械学習モデルは、医療スクリーニングから病気の発生、農業、産業、防衛科学など幅広い分野で進歩している。
多くのアプリケーションにおいて、学習参加者のコミュニケーションラウンドは、独自のプライベートデータセットを収集し、実際のデータに対して詳細な機械学習モデルを教え、これらのモデルを使用することの利点を共有することの恩恵を受ける。
既存のプライバシとセキュリティ上の懸念から、ほとんどの人はトレーニング用の機密データ共有を回避している。各ユーザがローカルデータを中央サーバにデモしない限り、フェデレートラーニングは、さまざまなパーティが共用データ上で機械学習アルゴリズムをトレーニングすることを可能にする。
論文 参考訳(メタデータ) (2021-11-07T15:14:29Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
フェデレーションラーニングは、データを明示的に交換することなく、ローカルデータセットを保持する複数のエッジデバイスでモデルをトレーニングするための新しい機械学習パラダイムです。
本稿では、信号処理ツールを用いて扱うのが自然である主な課題をカプセル化し、強調する、連合学習のための統一的な体系的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-03-31T15:14:39Z) - Reliability Check via Weight Similarity in Privacy-Preserving
Multi-Party Machine Learning [7.552100672006174]
我々は、データプライバシ、モデルプライバシ、マルチパーティ機械学習に関連するデータ品質の懸念に対処することに注力する。
データとモデルのプライバシーを確保しつつ、参加者のデータ品質をチェックするプライバシー保護協調学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T08:55:42Z) - TIPRDC: Task-Independent Privacy-Respecting Data Crowdsourcing Framework
for Deep Learning with Anonymized Intermediate Representations [49.20701800683092]
本稿では,匿名化中間表現を用いたタスク非依存型プライバシ参照データクラウドソーシングフレームワークTIPRDCを提案する。
このフレームワークの目的は、中間表現からプライバシー情報を隠蔽できる機能抽出器を学習することであり、データコレクターの生データに埋め込まれた元の情報を最大限に保持し、未知の学習タスクを達成することである。
論文 参考訳(メタデータ) (2020-05-23T06:21:26Z) - Anonymizing Data for Privacy-Preserving Federated Learning [3.3673553810697827]
我々は,フェデレートラーニングの文脈において,プライバシを提供するための最初の構文的アプローチを提案する。
当社のアプローチは,プライバシの保護レベルをサポートしながら,実用性やモデルの性能を最大化することを目的としている。
医療領域における2つの重要な課題について,100万人の患者の実世界電子健康データを用いて包括的実証評価を行った。
論文 参考訳(メタデータ) (2020-02-21T02:30:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。