Leveraging Planar Regularities for Point Line Visual-Inertial Odometry
- URL: http://arxiv.org/abs/2004.11969v2
- Date: Thu, 14 Jan 2021 07:06:17 GMT
- Title: Leveraging Planar Regularities for Point Line Visual-Inertial Odometry
- Authors: Xin Li, Yijia He, Jinlong Lin, Xiao Liu
- Abstract summary: With monocular Visual-Inertial Odometry (VIO) system, 3D point cloud and camera motion can be estimated simultaneously.
We propose PLP-VIO, which exploits point features and line features as well as plane regularities.
The effectiveness of the proposed method is verified on both synthetic data and public datasets.
- Score: 13.51108336267342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With monocular Visual-Inertial Odometry (VIO) system, 3D point cloud and
camera motion can be estimated simultaneously. Because pure sparse 3D points
provide a structureless representation of the environment, generating 3D mesh
from sparse points can further model the environment topology and produce dense
mapping. To improve the accuracy of 3D mesh generation and localization, we
propose a tightly-coupled monocular VIO system, PLP-VIO, which exploits point
features and line features as well as plane regularities. The co-planarity
constraints are used to leverage additional structure information for the more
accurate estimation of 3D points and spatial lines in state estimator. To
detect plane and 3D mesh robustly, we combine both the line features with point
features in the detection method. The effectiveness of the proposed method is
verified on both synthetic data and public datasets and is compared with other
state-of-the-art algorithms.
Related papers
- COMO: Compact Mapping and Odometry [17.71754144808295]
We present COMO, a real-time monocular mapping and odometry system that encodes dense geometry via a compact set of 3D anchor points.
The representation enables joint optimization of camera poses and dense geometry, intrinsic 3D consistency, and efficient second-order inference.
arXiv Detail & Related papers (2024-04-04T15:35:43Z) - PointOcc: Cylindrical Tri-Perspective View for Point-based 3D Semantic
Occupancy Prediction [72.75478398447396]
We propose a cylindrical tri-perspective view to represent point clouds effectively and comprehensively.
Considering the distance distribution of LiDAR point clouds, we construct the tri-perspective view in the cylindrical coordinate system.
We employ spatial group pooling to maintain structural details during projection and adopt 2D backbones to efficiently process each TPV plane.
arXiv Detail & Related papers (2023-08-31T17:57:17Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - SketchSampler: Sketch-based 3D Reconstruction via View-dependent Depth
Sampling [75.957103837167]
Reconstructing a 3D shape based on a single sketch image is challenging due to the large domain gap between a sparse, irregular sketch and a regular, dense 3D shape.
Existing works try to employ the global feature extracted from sketch to directly predict the 3D coordinates, but they usually suffer from losing fine details that are not faithful to the input sketch.
arXiv Detail & Related papers (2022-08-14T16:37:51Z) - TerrainMesh: Metric-Semantic Terrain Reconstruction from Aerial Images
Using Joint 2D-3D Learning [20.81202315793742]
This paper develops a joint 2D-3D learning approach to reconstruct a local metric-semantic mesh at each camera maintained by a visual odometry algorithm.
The mesh can be assembled into a global environment model to capture the terrain topology and semantics during online operation.
arXiv Detail & Related papers (2022-04-23T05:18:39Z) - FD-SLAM: 3-D Reconstruction Using Features and Dense Matching [18.577229381683434]
We propose an RGB-D SLAM system that uses dense frame-to-model odometry to build accurate sub-maps.
We incorporate a learning-based loop closure component based on 3-D features which further stabilises map building.
The approach can also scale to large scenes where other systems often fail.
arXiv Detail & Related papers (2022-03-25T18:58:46Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - KAPLAN: A 3D Point Descriptor for Shape Completion [80.15764700137383]
KAPLAN is a 3D point descriptor that aggregates local shape information via a series of 2D convolutions.
In each of those planes, point properties like normals or point-to-plane distances are aggregated into a 2D grid and abstracted into a feature representation with an efficient 2D convolutional encoder.
Experiments on public datasets show that KAPLAN achieves state-of-the-art performance for 3D shape completion.
arXiv Detail & Related papers (2020-07-31T21:56:08Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
Representation learning for 3D meshes is important in many computer vision and graphics applications.
We propose a local structure-aware anisotropic convolutional operation (LSA-Conv)
Our model produces significant improvement in 3D shape reconstruction compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-04-21T13:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.