FD-SLAM: 3-D Reconstruction Using Features and Dense Matching
- URL: http://arxiv.org/abs/2203.13861v1
- Date: Fri, 25 Mar 2022 18:58:46 GMT
- Title: FD-SLAM: 3-D Reconstruction Using Features and Dense Matching
- Authors: Xingrui Yang and Yuhang Ming and Zhaopeng Cui and Andrew Calway
- Abstract summary: We propose an RGB-D SLAM system that uses dense frame-to-model odometry to build accurate sub-maps.
We incorporate a learning-based loop closure component based on 3-D features which further stabilises map building.
The approach can also scale to large scenes where other systems often fail.
- Score: 18.577229381683434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is well known that visual SLAM systems based on dense matching are locally
accurate but are also susceptible to long-term drift and map corruption. In
contrast, feature matching methods can achieve greater long-term consistency
but can suffer from inaccurate local pose estimation when feature information
is sparse. Based on these observations, we propose an RGB-D SLAM system that
leverages the advantages of both approaches: using dense frame-to-model
odometry to build accurate sub-maps and on-the-fly feature-based matching
across sub-maps for global map optimisation. In addition, we incorporate a
learning-based loop closure component based on 3-D features which further
stabilises map building. We have evaluated the approach on indoor sequences
from public datasets, and the results show that it performs on par or better
than state-of-the-art systems in terms of map reconstruction quality and pose
estimation. The approach can also scale to large scenes where other systems
often fail.
Related papers
- IG-SLAM: Instant Gaussian SLAM [6.228980850646457]
3D Gaussian Splatting has recently shown promising results as an alternative scene representation in SLAM systems.
We present IG-SLAM, a dense RGB-only SLAM system that employs robust Dense-SLAM methods for tracking and combines them with Gaussian Splatting.
We demonstrate competitive performance with state-of-the-art RGB-only SLAM systems while achieving faster operation speeds.
arXiv Detail & Related papers (2024-08-02T09:07:31Z) - Splat-SLAM: Globally Optimized RGB-only SLAM with 3D Gaussians [87.48403838439391]
3D Splatting has emerged as a powerful representation of geometry and appearance for RGB-only dense Simultaneous SLAM.
We propose the first RGB-only SLAM system with a dense 3D Gaussian map representation.
Our experiments on the Replica, TUM-RGBD, and ScanNet datasets indicate the effectiveness of globally optimized 3D Gaussians.
arXiv Detail & Related papers (2024-05-26T12:26:54Z) - 3DGS-ReLoc: 3D Gaussian Splatting for Map Representation and Visual ReLocalization [13.868258945395326]
This paper presents a novel system designed for 3D mapping and visual relocalization using 3D Gaussian Splatting.
Our proposed method uses LiDAR and camera data to create accurate and visually plausible representations of the environment.
arXiv Detail & Related papers (2024-03-17T23:06:12Z) - Loopy-SLAM: Dense Neural SLAM with Loop Closures [53.11936461015725]
We introduce Loopy-SLAM that globally optimize poses and the dense 3D model.
We use frame-to-model tracking using a data-driven point-based submap generation method and trigger loop closures online by performing global place recognition.
Evaluation on the synthetic Replica and real-world TUM-RGBD and ScanNet datasets demonstrate competitive or superior performance in tracking, mapping, and rendering accuracy when compared to existing dense neural RGBD SLAM methods.
arXiv Detail & Related papers (2024-02-14T18:18:32Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z) - Volumetric Semantically Consistent 3D Panoptic Mapping [77.13446499924977]
We introduce an online 2D-to-3D semantic instance mapping algorithm aimed at generating semantic 3D maps suitable for autonomous agents in unstructured environments.
It introduces novel ways of integrating semantic prediction confidence during mapping, producing semantic and instance-consistent 3D regions.
The proposed method achieves accuracy superior to the state of the art on public large-scale datasets, improving on a number of widely used metrics.
arXiv Detail & Related papers (2023-09-26T08:03:10Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
We present a new methodology for real-time semantic mapping from RGB-D sequences.
It combines a 2D neural network and a 3D network based on a SLAM system with 3D occupancy mapping.
Our system achieves state-of-the-art semantic mapping quality within 2D-3D networks-based systems.
arXiv Detail & Related papers (2023-06-28T22:36:44Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - SHINE-Mapping: Large-Scale 3D Mapping Using Sparse Hierarchical Implicit
Neural Representations [37.733802382489515]
This paper addresses the problems of achieving large-scale 3D reconstructions with implicit representations using 3D LiDAR measurements.
We learn and store implicit features through an octree-based hierarchical structure, which is sparse and sparse.
Our experiments show that our 3D reconstructions are more accurate, complete, and memory-efficient than current state-of-the-art 3D mapping methods.
arXiv Detail & Related papers (2022-10-05T14:38:49Z) - Object-Augmented RGB-D SLAM for Wide-Disparity Relocalisation [3.888848425698769]
We propose a novel object-augmented RGB-D SLAM system that is capable of constructing a consistent object map and performing relocalisation based on centroids of objects in the map.
arXiv Detail & Related papers (2021-08-05T11:02:25Z) - Leveraging Planar Regularities for Point Line Visual-Inertial Odometry [13.51108336267342]
With monocular Visual-Inertial Odometry (VIO) system, 3D point cloud and camera motion can be estimated simultaneously.
We propose PLP-VIO, which exploits point features and line features as well as plane regularities.
The effectiveness of the proposed method is verified on both synthetic data and public datasets.
arXiv Detail & Related papers (2020-04-16T18:20:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.