A State Aggregation Approach for Solving Knapsack Problem with Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2004.12117v1
- Date: Sat, 25 Apr 2020 11:52:24 GMT
- Title: A State Aggregation Approach for Solving Knapsack Problem with Deep
Reinforcement Learning
- Authors: Reza Refaei Afshar and Yingqian Zhang and Murat Firat and Uzay Kaymak
- Abstract summary: This paper proposes a Deep Reinforcement Learning (DRL) approach for solving knapsack problem.
The state aggregation policy is applied to each problem instance of the knapsack problem.
The proposed model with the state aggregation strategy not only gives better solutions but also learns in less timesteps, than the one without state aggregation.
- Score: 3.614984020677526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a Deep Reinforcement Learning (DRL) approach for solving
knapsack problem. The proposed method consists of a state aggregation step
based on tabular reinforcement learning to extract features and construct
states. The state aggregation policy is applied to each problem instance of the
knapsack problem, which is used with Advantage Actor Critic (A2C) algorithm to
train a policy through which the items are sequentially selected at each time
step. The method is a constructive solution approach and the process of
selecting items is repeated until the final solution is obtained. The
experiments show that our approach provides close to optimal solutions for all
tested instances, outperforms the greedy algorithm, and is able to handle
larger instances and more flexible than an existing DRL approach. In addition,
the results demonstrate that the proposed model with the state aggregation
strategy not only gives better solutions but also learns in less timesteps,
than the one without state aggregation.
Related papers
- Take a Step and Reconsider: Sequence Decoding for Self-Improved Neural Combinatorial Optimization [1.1510009152620668]
We present a simple and problem-independent sequence decoding method for self-improved learning.
By modifying the policy to ignore previously sampled sequences, we force it to consider only unseen alternatives.
Our method outperforms previous NCO approaches on the Job Shop Scheduling Problem.
arXiv Detail & Related papers (2024-07-24T12:06:09Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Sample-Efficient, Exploration-Based Policy Optimisation for Routing
Problems [2.6782615615913348]
This paper presents a new reinforcement learning approach that is based on entropy.
In addition, we design an off-policy-based reinforcement learning technique that maximises the expected return.
We show that our model can generalise to various route problems.
arXiv Detail & Related papers (2022-05-31T09:51:48Z) - Instance-Dependent Confidence and Early Stopping for Reinforcement
Learning [99.57168572237421]
Various algorithms for reinforcement learning (RL) exhibit dramatic variation in their convergence rates as a function of problem structure.
This research provides guarantees that explain textitex post the performance differences observed.
A natural next step is to convert these theoretical guarantees into guidelines that are useful in practice.
arXiv Detail & Related papers (2022-01-21T04:25:35Z) - A Boosting Approach to Reinforcement Learning [59.46285581748018]
We study efficient algorithms for reinforcement learning in decision processes whose complexity is independent of the number of states.
We give an efficient algorithm that is capable of improving the accuracy of such weak learning methods.
arXiv Detail & Related papers (2021-08-22T16:00:45Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
Off-policy policy optimization is a challenging problem in reinforcement learning.
Off-policy algorithms are memory-efficient and capable of learning from off-policy samples.
arXiv Detail & Related papers (2020-09-14T16:22:46Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Robust Reinforcement Learning using Least Squares Policy Iteration with
Provable Performance Guarantees [3.8073142980733]
This paper addresses the problem of model-free reinforcement learning for Robust Markov Decision Process (RMDP) with large state spaces.
We first propose the Robust Least Squares Policy Evaluation algorithm, which is a multi-step online model-free learning algorithm for policy evaluation.
We then propose Robust Least Squares Policy Iteration (RLSPI) algorithm for learning the optimal robust policy.
arXiv Detail & Related papers (2020-06-20T16:26:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.