論文の概要: A Bayesian machine scientist to aid in the solution of challenging
scientific problems
- arxiv url: http://arxiv.org/abs/2004.12157v1
- Date: Sat, 25 Apr 2020 14:42:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 21:34:52.644057
- Title: A Bayesian machine scientist to aid in the solution of challenging
scientific problems
- Title(参考訳): ベイズ人の機械科学者が科学的課題の解決を支援する
- Authors: Roger Guimera and Ignasi Reichardt and Antoni Aguilar-Mogas and
Francesco A Massucci and Manuel Miranda and Jordi Pallares and Marta
Sales-Pardo
- Abstract要約: ベイジアン・マシン・サイエンティストは、モデルよりも正確な辺縁後部への明示的な近似を用いてモデルの妥当性を確立する。
マルコフ連鎖モンテカルロを用いてモデル空間を探索する。
提案手法は,合成および実データの正確なモデルを明らかにし,既存の手法よりも高精度なサンプル外予測を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Closed-form, interpretable mathematical models have been instrumental for
advancing our understanding of the world; with the data revolution, we may now
be in a position to uncover new such models for many systems from physics to
the social sciences. However, to deal with increasing amounts of data, we need
"machine scientists" that are able to extract these models automatically from
data. Here, we introduce a Bayesian machine scientist, which establishes the
plausibility of models using explicit approximations to the exact marginal
posterior over models and establishes its prior expectations about models by
learning from a large empirical corpus of mathematical expressions. It explores
the space of models using Markov chain Monte Carlo. We show that this approach
uncovers accurate models for synthetic and real data and provides out-of-sample
predictions that are more accurate than those of existing approaches and of
other nonparametric methods.
- Abstract(参考訳): クローズドフォームで解釈可能な数学的モデルは、世界の理解を促進するのに役立っている。データ革命により、我々は物理学から社会科学まで、多くのシステムでそのような新しいモデルを明らかにする立場にあるかもしれない。
しかし、データ量の増加に対処するには、データからこれらのモデルを自動的に抽出できる「機械科学者」が必要です。
そこで,ベイジアン機械科学者は,モデルに対する厳密な辺縁後部への明示的な近似を用いてモデルの妥当性を確立し,数学的表現の大規模な経験的コーパスから学習することによって,モデルに対する事前の期待を確立する。
マルコフ連鎖モンテカルロを用いてモデルの空間を探索する。
提案手法は,合成データや実データに対する正確なモデルを明らかにし,既存の手法や非パラメトリックな手法よりも高精度なサンプル外予測を提供する。
関連論文リスト
- Towards Learning Stochastic Population Models by Gradient Descent [0.0]
パラメータと構造を同時に推定することで,最適化手法に大きな課題が生じることを示す。
モデルの正確な推定を実証するが、擬似的、解釈可能なモデルの推論を強制することは、難易度を劇的に高める。
論文 参考訳(メタデータ) (2024-04-10T14:38:58Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Discovering interpretable models of scientific image data with deep
learning [0.0]
表現学習、疎い深層ニューラルネットワークトレーニング、シンボリックレグレッションを実装している。
顕微鏡データにおける細胞状態の分類に関するよく研究されたテスト問題を用いて,バイオイメージングの分野との関連性を示す。
生物現象を科学的に説明するための解釈可能なモデルの有用性について検討する。
論文 参考訳(メタデータ) (2024-02-05T15:45:55Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Breiman's two cultures: You don't have to choose sides [10.695407438192527]
Breiman氏の古典的な論文は、2つの文化の選択肢としてデータ分析をキャストする。
データモデラーは、データ解析によく理解された理論的特性を持つ単純な解釈可能なモデルを使用する。
アルゴリズムモデラーは予測精度を優先順位付けし、より柔軟な関数近似を用いてデータを分析する。
論文 参考訳(メタデータ) (2021-04-25T17:58:46Z) - Kernel-Based Models for Influence Maximization on Graphs based on
Gaussian Process Variance Minimization [9.357483974291899]
グラフ上の新しい影響モデル(IM)の導入と検討を行う。
データ駆動アプローチは、このIMモデルの適切なカーネルを決定するために適用することができる。
この分野でコストのかかるモンテカルロシミュレーションに依存するモデルと比較して、我々のモデルはシンプルでコスト効率のよい更新戦略を可能にする。
論文 参考訳(メタデータ) (2021-03-02T08:55:34Z) - Design of Dynamic Experiments for Black-Box Model Discrimination [72.2414939419588]
選択したいような動的モデル判別の設定を考えてみましょう。 (i) 最高のメカニスティックな時間変化モデルと (ii) 最高のモデルパラメータ推定値です。
勾配情報にアクセス可能な競合する力学モデルに対しては、既存の手法を拡張し、より広い範囲の問題の不確実性を組み込む。
これらのブラックボックスモデルをガウス過程サロゲートモデルに置き換えることで、モデル識別設定を拡張して、競合するブラックボックスモデルをさらに取り入れる。
論文 参考訳(メタデータ) (2021-02-07T11:34:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。