論文の概要: On the Generalization Capability of Evolved Counter-propagation
Neuro-controllers for Robot Navigation
- arxiv url: http://arxiv.org/abs/2004.12188v1
- Date: Sat, 25 Apr 2020 16:55:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 21:52:35.376954
- Title: On the Generalization Capability of Evolved Counter-propagation
Neuro-controllers for Robot Navigation
- Title(参考訳): ロボットナビゲーションのための進化型対向神経制御器の一般化能力について
- Authors: Amiram Moshaiov and Michael Zadok
- Abstract要約: CPNCの進化によって得られる収束速度と最終性能は、FFNCの進化によって得られるものよりも優れていることが実証された。
本稿では,両種類の進化型ナビゲーションコントローラの迷路一般化機能について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evolving Counter-Propagation Neuro-Controllers (CPNCs), rather than the
traditional Feed-Forward Neuro-Controllers (FFNCs), has recently been suggested
and tested using simulated robot navigation. It has been demon-strated that
both convergence rate and final performance obtained by evolving CPNCs are
superior to those obtained by evolving FFNCs. In this paper the maze
generalization features of both types of evolved navigation controllers are
examined. For this purpose the controllers are tested in an environment that
drastically differs from the one used for their training. Moreover, a
comparison is carried out of results obtained by single-objective and
multi-objective evolution approaches. Using a simulated case-study, the maze
generalization capability of the evolved CPNCs is highlighted in both the
single and multi-objective cases. In contrast, the evolved FFNCs are found to
lack such capabilities in both approaches.
- Abstract(参考訳): 従来のFFNC(Feed-Forward Neuro-Controllers)よりもCPNC(Evolving Counter-Propagation Neuro-Controllers)が提案され、ロボットナビゲーションを用いてテストされている。
CPNCの進化によって得られる収束速度と最終性能は、FFNCの進化によって得られるものよりも優れていることが実証された。
本稿では,両種類の進化型ナビゲーションコントローラの迷路一般化特性について検討する。
この目的のために、コントローラはトレーニングで使用されるものとは大きく異なる環境でテストされる。
さらに、単目的および多目的進化アプローチによって得られた結果から比較を行う。
シミュレートされたケーススタディを用いて、進化したCPNCの迷路一般化能力は、単目的ケースと多目的ケースの両方で強調される。
対照的に、進化したFFNCは、両方のアプローチでそのような能力を欠いている。
関連論文リスト
- Trackable Agent-based Evolution Models at Wafer Scale [0.0]
我々は,85万プロセッサCerebras Wafer Scale Engine(WSE)のエージェントベース進化から系統情報を抽出する問題に焦点をあてる。
We present a asynchronous island-based genetic algorithm (GA) framework for WSE hardware。
本研究は,これらの治験の系統的再構成を検証し,根底にある進化状態の推測に適合することを示す。
論文 参考訳(メタデータ) (2024-04-16T19:24:14Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
既存のディープラーニングソリューションには,3つの大きな制限がある。
我々はフェデレートグラフベースの多軌道進化ネットワークであるFedGmTE-Net++を紹介する。
フェデレーションの力を利用して、限られたデータセットを持つ多種多様な病院の地域学習を集約する。
論文 参考訳(メタデータ) (2024-01-01T10:20:01Z) - DARLEI: Deep Accelerated Reinforcement Learning with Evolutionary
Intelligence [77.78795329701367]
本稿では,進化アルゴリズムと並列化強化学習を組み合わせたフレームワークであるDARLEIを提案する。
我々はDARLEIの性能を様々な条件で特徴付け、進化形態の多様性に影響を与える要因を明らかにした。
今後DARLEIを拡張して、よりリッチな環境における多様な形態素間の相互作用を取り入れていきたいと考えています。
論文 参考訳(メタデータ) (2023-12-08T16:51:10Z) - Neural-Logic Human-Object Interaction Detection [67.4993347702353]
本稿では,ニューラルロジック推論を利用した新しいHOI検出器であるL OGIC HOIと,実体間の相互作用を推測するTransformerを提案する。
具体的には,バニラトランスフォーマーの自己保持機構を改変し,人間,行動,対象>三重項を推論し,新たな相互作用を構成する。
我々はこれらの2つの特性を一階述語論理で定式化し、それらを連続空間に基底にして、我々のアプローチの学習過程を制約し、性能とゼロショットの一般化能力を向上させる。
論文 参考訳(メタデータ) (2023-11-16T11:47:53Z) - Evolving generalist controllers to handle a wide range of morphological variations [1.4425878137951238]
人工ニューラルネットワーク(ANN)の堅牢性と一般化性の研究は、いまだに限られている。
予期せぬ形態変化や環境変化は、ANNコントローラがこれらの変化を処理できなければ失敗する可能性がある。
本稿では,制御器の堅牢性と一般化性を高めることを目的としたアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-18T23:06:19Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Generative Adversarial Neuroevolution for Control Behaviour Imitation [3.04585143845864]
本稿では,一般的なシミュレーション環境における行動模倣にディープ・ニューロエボリューションが有効かどうかを考察する。
我々は、単純な共進化的逆数生成フレームワークを導入し、標準の深い再帰ネットワークを進化させることにより、その能力を評価する。
全てのタスクにおいて、事前訓練されたエージェントが獲得したものよりも高いスコアを達成できる最後のエリートアクターが見つかる。
論文 参考訳(メタデータ) (2023-04-03T16:33:22Z) - Centralizing State-Values in Dueling Networks for Multi-Robot
Reinforcement Learning Mapless Navigation [87.85646257351212]
本稿では,CTDE(Training and Decentralized Execution)パラダイムにおけるマルチロボットマップレスナビゲーションの問題点について考察する。
この問題は、各ロボットが観察を他のロボットと明示的に共有することなく、その経路を考えると困難である。
我々は,集中型状態値ネットワークを用いて共同状態値を計算するCTDEの新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-16T16:47:00Z) - Bayesian optimization of distributed neurodynamical controller models
for spatial navigation [1.9249287163937971]
我々はニューロシュワームコントローラを導入し、エージェントベースの相互作用を神経ネットワークの相互作用に類似してモデル化する。
この複雑さは、従来のSwarmモデルの研究に一般的に使用される安定性、制御可能性、性能の線形解析を妨げる。
ベイズ最適化に基づく自律型マルチエージェントシステムの動的コントローラモデルをチューニングするためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-31T21:43:06Z) - Multimodal VAE Active Inference Controller [0.0]
本稿では,産業用アームのアクティブ推論トルク制御装置を提案する。
線形結合型マルチモーダル変分オートエンコーダを用いたマルチモーダル状態表現学習を含む。
結果は、表現力の増加による目標方向到達の追跡と制御の改善を示した。
論文 参考訳(メタデータ) (2021-03-07T18:00:27Z) - Robust Policies via Mid-Level Visual Representations: An Experimental
Study in Manipulation and Navigation [115.4071729927011]
エンド・ツー・エンドのRLフレームワークにおいて,中間レベルの視覚表現を汎用的かつ容易に認識可能な知覚状態として用いることの効果について検討した。
一般化を支援し、サンプルの複雑さを改善し、最終的なパフォーマンスを高めることを示します。
実際には、ドメインのランダム化やスクラッチからの学習が失敗したタスクのポリシーをうまくトレーニングするために、中間レベルの表現が使用できる。
論文 参考訳(メタデータ) (2020-11-13T00:16:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。