論文の概要: Convex Representation Learning for Generalized Invariance in
Semi-Inner-Product Space
- arxiv url: http://arxiv.org/abs/2004.12209v3
- Date: Sat, 25 Jul 2020 17:06:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 21:27:07.379375
- Title: Convex Representation Learning for Generalized Invariance in
Semi-Inner-Product Space
- Title(参考訳): 半内積空間における一般化不変性に対する凸表現学習
- Authors: Yingyi Ma, Vignesh Ganapathiraman, Yaoliang Yu, Xinhua Zhang
- Abstract要約: 本研究では, 半ノルムにおける多種多様な一般化表現のアルゴリズムを開発し, 先頭の表現子を定式化し, 境界を定式化する。
これにより、正確な予測とともに、我々の実験で確認されているように、表現を効率的かつ効果的に学習することができる。
- 参考スコア(独自算出の注目度): 32.442549424823355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Invariance (defined in a general sense) has been one of the most effective
priors for representation learning. Direct factorization of parametric models
is feasible only for a small range of invariances, while regularization
approaches, despite improved generality, lead to nonconvex optimization. In
this work, we develop a convex representation learning algorithm for a variety
of generalized invariances that can be modeled as semi-norms. Novel Euclidean
embeddings are introduced for kernel representers in a semi-inner-product
space, and approximation bounds are established. This allows invariant
representations to be learned efficiently and effectively as confirmed in our
experiments, along with accurate predictions.
- Abstract(参考訳): 不変性(一般感覚で定義される)は表現学習の最も効果的な先駆者の一つである。
パラメトリックモデルの直接分解は、少数の不変量に対してのみ実現可能であるが、正規化アプローチは、一般性の改善にもかかわらず、非凸最適化をもたらす。
本研究では,半ノルムとしてモデル化できる様々な一般化不変量に対する凸表現学習アルゴリズムを開発した。
半インナー積空間におけるカーネル表現子に対する新しいユークリッド埋め込みを導入し、近似境界を確立する。
これにより、不変表現は、実験で確認されたように効率的かつ効果的に学習でき、正確な予測が可能となる。
関連論文リスト
- A general error analysis for randomized low-rank approximation with application to data assimilation [42.57210316104905]
中心行列および非標準行列に対するフロベニウスノルムにおける低ランク近似誤差の解析のための枠組みを提案する。
最小限の仮定の下では、期待と確率の正確な境界を導出する。
私たちの境界には、プロパティを導出し、実践的な選択を動機付けるための明確な解釈があります。
論文 参考訳(メタデータ) (2024-05-08T04:51:56Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
既存の一般化境界は、現代のニューラルネットワークの一般化を促進する重要な要因を説明することができない。
データ空間における学習予測関数の局所リプシッツ正則性に依存するインスタンス依存の一般化境界を導出する。
ニューラルネットワークに対する一般化境界を実験的に解析し、有界値が有意義であることを示し、トレーニング中の一般的な正規化方法の効果を捉える。
論文 参考訳(メタデータ) (2022-11-02T16:39:42Z) - Predicting Out-of-Domain Generalization with Neighborhood Invariance [59.05399533508682]
局所変換近傍における分類器の出力不変性の尺度を提案する。
私たちの測度は計算が簡単で、テストポイントの真のラベルに依存しません。
画像分類,感情分析,自然言語推論のベンチマーク実験において,我々の測定値と実際のOOD一般化との間に強い相関関係を示す。
論文 参考訳(メタデータ) (2022-07-05T14:55:16Z) - PAC Generalization via Invariant Representations [41.02828564338047]
有限標本集合における$epsilon$-approximate不変性の概念を考える。
PAC学習にインスパイアされ、有限サンプルのアウト・オブ・ディストリビューション一般化保証を得る。
この結果から, 介入部位が非次境界ノードの一定サイズの部分集合内にある場合に, 周囲次元でスケールしない境界を示す。
論文 参考訳(メタデータ) (2022-05-30T15:50:14Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - On the benefits of representation regularization in invariance based
domain generalization [6.197602794925773]
ドメインの一般化は、観測された環境と見えない環境の間のこのような予測ギャップを軽減することを目的としている。
本稿では、単に不変表現の学習が、目に見えない環境に対して脆弱であることを明らかにする。
さらに, 領域一般化におけるロバスト性向上のための効率的な正則化手法を考案した。
論文 参考訳(メタデータ) (2021-05-30T13:13:55Z) - Efficient Semi-Implicit Variational Inference [65.07058307271329]
効率的でスケーラブルな半単純外挿 (SIVI) を提案する。
本手法はSIVIの証拠を低勾配値の厳密な推測にマッピングする。
論文 参考訳(メタデータ) (2021-01-15T11:39:09Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Mean-Field Approximation to Gaussian-Softmax Integral with Application
to Uncertainty Estimation [23.38076756988258]
ディープニューラルネットワークにおける不確実性を定量化するための,新しい単一モデルに基づくアプローチを提案する。
平均場近似式を用いて解析的に難解な積分を計算する。
実験的に,提案手法は最先端の手法と比較して競合的に機能する。
論文 参考訳(メタデータ) (2020-06-13T07:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。