論文の概要: A Novel Corpus of Annotated Medical Imaging Reports and Information Extraction Results Using BERT-based Language Models
- arxiv url: http://arxiv.org/abs/2403.18975v1
- Date: Wed, 27 Mar 2024 19:43:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 18:01:51.071125
- Title: A Novel Corpus of Annotated Medical Imaging Reports and Information Extraction Results Using BERT-based Language Models
- Title(参考訳): 注釈付医用画像レポートのコーパスとBERT言語モデルを用いた情報抽出結果
- Authors: Namu Park, Kevin Lybarger, Giridhar Kaushik Ramachandran, Spencer Lewis, Aashka Damani, Ozlem Uzuner, Martin Gunn, Meliha Yetisgen,
- Abstract要約: 医療画像は多くの健康状態の診断、監視、治療に重要である。
放射線学者は、これらの複雑で非構造的なイメージを解釈し、ほとんど非構造的のままの物語報告を通じてその評価を明確にする。
この非構造化の物語は、振り返り分析や臨床決定支援のような二次的な応用を促進するために、構造化された意味表現に変換されなければならない。
- 参考スコア(独自算出の注目度): 4.023338734079828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical imaging is critical to the diagnosis, surveillance, and treatment of many health conditions, including oncological, neurological, cardiovascular, and musculoskeletal disorders, among others. Radiologists interpret these complex, unstructured images and articulate their assessments through narrative reports that remain largely unstructured. This unstructured narrative must be converted into a structured semantic representation to facilitate secondary applications such as retrospective analyses or clinical decision support. Here, we introduce the Corpus of Annotated Medical Imaging Reports (CAMIR), which includes 609 annotated radiology reports from three imaging modality types: Computed Tomography, Magnetic Resonance Imaging, and Positron Emission Tomography-Computed Tomography. Reports were annotated using an event-based schema that captures clinical indications, lesions, and medical problems. Each event consists of a trigger and multiple arguments, and a majority of the argument types, including anatomy, normalize the spans to pre-defined concepts to facilitate secondary use. CAMIR uniquely combines a granular event structure and concept normalization. To extract CAMIR events, we explored two BERT (Bi-directional Encoder Representation from Transformers)-based architectures, including an existing architecture (mSpERT) that jointly extracts all event information and a multi-step approach (PL-Marker++) that we augmented for the CAMIR schema.
- Abstract(参考訳): 医療画像は、腫瘍学、神経学、循環器学、筋骨格疾患など、多くの健康状態の診断、監視、治療に重要である。
放射線学者は、これらの複雑で非構造的なイメージを解釈し、ほとんど非構造的のままの物語報告を通じてその評価を明確にする。
この非構造的物語は、振り返り分析や臨床決定支援のような二次的な応用を促進するために、構造化された意味表現に変換されなければならない。
ここでは、CT、磁気共鳴イメージング、ポジトロン放射トモグラフィーの3種類の画像モダリティから609個の注釈付き放射線診断レポートを含む、注釈付医用イメージングレポート(CAMIR)について紹介する。
報告は、臨床所見、病変、医療上の問題をキャプチャするイベントベースのスキーマを使用して注釈付けされた。
各イベントはトリガと複数の引数で構成され、解剖学を含む引数の型の大部分は、二次的な使用を容易にするために、事前に定義された概念にスパンを正規化する。
CAMIRは、粒度のイベント構造と概念正規化を独自に組み合わせている。
CAMIR イベントを抽出するために,既存のアーキテクチャ (mSpERT) と CAMIR スキーマ用に拡張したマルチステップアプローチ (PL-Marker++) を含む,BERT ベースのアーキテクチャを2つ検討した。
関連論文リスト
- VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
医用画像における視覚的属性は、医用画像の診断関連成分を明確にすることを目指している。
本稿では、潜在拡散モデルとドメイン固有大言語モデルを組み合わせた新しい生成的視覚属性手法を提案する。
結果として生じるシステムは、ゼロショット局所化疾患誘導を含む様々な潜在能力を示す。
論文 参考訳(メタデータ) (2024-01-02T19:51:49Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - LIMITR: Leveraging Local Information for Medical Image-Text
Representation [17.102338932907294]
胸部X線画像とそれに対応する放射線学的報告に焦点を当てた。
共同X線画像とレポート表現を学習する新しいモデルを提案する。
論文 参考訳(メタデータ) (2023-03-21T11:20:34Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
我々は、Show-Attend-Tell と GPT-3 という2つの言語モデルを組み合わせて、包括的で記述的な放射線学記録を生成する。
提案モデルは、Open-I、MIMIC-CXR、汎用MS-COCOの2つの医療データセットで検証される。
論文 参考訳(メタデータ) (2022-09-28T10:27:10Z) - Context-Aware Transformers For Spinal Cancer Detection and Radiological
Grading [70.04389979779195]
本稿では,脊椎分析に関わる医療画像問題に対するトランスフォーマーを用いた新しいモデルアーキテクチャを提案する。
MR画像におけるそのようなモデルの2つの応用について考察する: (a)脊椎転移の検出と脊椎骨折の関連状況と転移性脊髄圧迫。
画像中の脊椎のコンテキストを考慮することで,SCTは以前に公表したモデルと比較して,いくつかのグレーディングの精度を向上することを示す。
論文 参考訳(メタデータ) (2022-06-27T10:31:03Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
本研究では,非構造的トピック関連超音波レポート生成のための新しい因子的注意・埋め込みモデル(FAE-Gen)を提案する。
提案したFAE-Genは主に2つのモジュール、すなわちビュー誘導因子の注意とトピック指向因子の埋め込みから構成されており、異なるビューで均質および不均一な形態的特徴を捉えている。
論文 参考訳(メタデータ) (2022-03-12T15:24:03Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
放射線技師の動作パターンを模倣する補助信号誘導知識デコーダ(ASGK)を提案する。
ASGKは、内的特徴融合と外部医療言語情報を統合して、医療知識の伝達と学習をガイドする。
論文 参考訳(メタデータ) (2020-06-06T01:00:15Z) - Show, Describe and Conclude: On Exploiting the Structure Information of
Chest X-Ray Reports [5.6070625920019825]
胸部X線像(CXR)は臨床検診や診断に一般的に用いられる。
レポートのセクションと内部の複雑な構造は、自動レポート生成に大きな課題をもたらします。
本稿では,CXRイメージングレポートを生成するために,レポートセクション間の構造情報を利用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-26T02:29:20Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。