A New Qubits Mapping Mechanism for Multi-programming Quantum Computing
- URL: http://arxiv.org/abs/2004.12854v1
- Date: Mon, 27 Apr 2020 15:08:47 GMT
- Title: A New Qubits Mapping Mechanism for Multi-programming Quantum Computing
- Authors: Lei Liu, Xinglei Dou
- Abstract summary: We propose a new approach to map concurrent quantum programs on a quantum chip.
The first one is the Community Detection Assisted Partition (CDAP) algorithm, which partitions physical qubits for concurrent quantum programs.
The second one is the X-SWAP scheme that enables inter-program SWAP operations to reduce the SWAP overheads.
- Score: 2.4522001791328885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For a specific quantum chip, multi-programming helps to improve overall
throughput and resource utilization. However, the previous solutions for
mapping multiple programs onto a quantum chip often lead to resource
under-utilization, high error rate and low fidelity. In this paper, we propose
a new approach to map concurrent quantum programs. Our approach has three
critical components. The first one is the Community Detection Assisted
Partition (CDAP) algorithm, which partitions physical qubits for concurrent
quantum programs by considering both physical typology and the error rates,
avoiding the waste of robust resources. The second one is the X-SWAP scheme
that enables inter-program SWAP operations to reduce the SWAP overheads.
Finally, we propose a compilation task scheduling framework, which dynamically
selects concurrent quantum programs to be executed based on estimated fidelity,
increasing the throughput of the quantum computer. We evaluate our work on
publicly available quantum computer IBMQ16 and a simulated quantum chip IBMQ20.
Our work outperforms the previous solution on multi-programming in both
fidelity and SWAP overheads by 12.0% and 11.1%, respectively.
Related papers
- Tackling Coherent Noise in Quantum Computing via Cross-Layer Compiler Optimization [1.6436891312063917]
Quantum computing hardware is affected by quantum noise that undermine the quality of results of an executed quantum program.
Coherent error that caused by parameter drifting and miscalibration remains critical.
This work proposes a cross-layer approach for coherent error mitigation.
arXiv Detail & Related papers (2024-10-12T22:39:06Z) - Unlocking Quantum Optimization: A Use Case Study on NISQ Systems [0.0]
This paper considers two industrial relevant use cases: one in the realm of optimizing charging schedules for electric vehicles, the other concerned with the optimization of truck routes.
Our central contribution are systematic series of examples derived from these uses cases that we execute on different processors of the gate-based quantum computers of IBM as well as on the quantum annealer of D-Wave.
arXiv Detail & Related papers (2024-04-10T17:08:07Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Distributed Quantum Computing with QMPI [11.71212583708166]
We introduce an extension of the Message Passing Interface (MPI) to enable high-performance implementations of distributed quantum algorithms.
In addition to a prototype implementation of quantum MPI, we present a performance model for distributed quantum computing, SENDQ.
arXiv Detail & Related papers (2021-05-03T18:30:43Z) - Enabling Multi-programming Mechanism for Quantum Computing in the NISQ
Era [0.0]
NISQ devices have several physical limitations and unavoidable noisy quantum operations.
Only small circuits can be executed on a quantum machine to get reliable results.
We propose a Quantum Multi-programming Compiler (QuMC) to execute multiple quantum circuits on quantum hardware simultaneously.
arXiv Detail & Related papers (2021-02-10T08:46:16Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - SQUARE: Strategic Quantum Ancilla Reuse for Modular Quantum Programs via
Cost-Effective Uncomputation [7.92565122267857]
We present a compilation infrastructure that tackles allocation and reclamation of scratch qubits (called ancilla) in quantum programs.
At its core, SQUARE strategically performs uncomputation to create opportunities for qubit reuse.
Our results show that SQUARE improves the average success rate of NISQ applications by 1.47X.
arXiv Detail & Related papers (2020-04-18T06:34:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.