論文の概要: On Faithfulness and Coherence of Language Explanations for
Recommendation Systems
- arxiv url: http://arxiv.org/abs/2209.05409v1
- Date: Mon, 12 Sep 2022 17:00:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-13 12:27:46.609501
- Title: On Faithfulness and Coherence of Language Explanations for
Recommendation Systems
- Title(参考訳): レコメンデーションシステムにおける言語説明の忠実さとコヒーレンスについて
- Authors: Zhouhang Xie, Julian McAuley and Bodhisattwa Prasad Majumder
- Abstract要約: この研究は、最先端モデルとそのレビュー生成コンポーネントを探索する。
得られた説明は不安定であり, 推定評価の合理的な根拠として考える前に, さらなる評価が必要であることを示す。
- 参考スコア(独自算出の注目度): 8.143715142450876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reviews contain rich information about product characteristics and user
interests and thus are commonly used to boost recommender system performance.
Specifically, previous work show that jointly learning to perform review
generation improves rating prediction performance. Meanwhile, these
model-produced reviews serve as recommendation explanations, providing the user
with insights on predicted ratings. However, while existing models could
generate fluent, human-like reviews, it is unclear to what degree the reviews
fully uncover the rationale behind the jointly predicted rating. In this work,
we perform a series of evaluations that probes state-of-the-art models and
their review generation component. We show that the generated explanations are
brittle and need further evaluation before being taken as literal rationales
for the estimated ratings.
- Abstract(参考訳): レビューには製品特性やユーザの興味に関する豊富な情報が含まれており、リコメンダシステムのパフォーマンス向上に一般的に使用されている。
具体的には、レビュー生成を行うための共同学習が評価予測性能を向上させることを示す。
一方、これらのモデル生成レビューはレコメンデーションの説明となり、ユーザーは予測された評価についての洞察を提供する。
しかし、既存のモデルが人間的なレビューを生み出す可能性はあるが、この共同評価の背後にある根拠がどの程度明確かは不明だ。
本研究では,最先端のモデルとそのレビュー生成成分を調査する一連の評価を行う。
得られた説明は不安定であり, 推定評価の合理的な根拠となる前に, さらなる評価が必要であることを示す。
関連論文リスト
- Analytical and Empirical Study of Herding Effects in Recommendation Systems [72.6693986712978]
評価アグリゲーションルールとショートリストされた代表レビューを用いて製品評価を管理する方法について検討する。
本稿では,Amazon と TripAdvisor の収束速度を向上させるために,適切な信頼度評価アグリゲーションルールが有効であることを示す。
論文 参考訳(メタデータ) (2024-08-20T14:29:23Z) - Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation [67.88747330066049]
きめ細かいフィードバックは、画像の品質と迅速な調整におけるニュアンスドの区別を捉えます。
粗いフィードバックに対する優位性を示すことは、自動ではないことを示す。
きめ細かいフィードバックを抽出し活用する上で重要な課題を特定します。
論文 参考訳(メタデータ) (2024-06-24T17:19:34Z) - CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation [87.44350003888646]
Eval-Instructは、疑似参照でポイントワイズした批評を取得し、マルチパスプロンプトを通じてこれらの批評を修正できる。
CritiqueLLMは、ChatGPTとすべてのオープンソースベースラインを上回るように実証的に示されています。
論文 参考訳(メタデータ) (2023-11-30T16:52:42Z) - Explainable Recommender with Geometric Information Bottleneck [25.703872435370585]
本稿では,ユーザ-イテム相互作用から学習した幾何学的事前学習を変分ネットワークに組み込むことを提案する。
個々のユーザとイテムペアからの遅延因子は、レコメンデーションと説明生成の両方に使用することができる。
3つの電子商取引データセットの実験結果から,我々のモデルは変分レコメンデータの解釈可能性を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2023-05-09T10:38:36Z) - Towards Personalized Review Summarization by Modeling Historical Reviews
from Customer and Product Separately [59.61932899841944]
レビュー要約(review summarization)は、Eコマースのウェブサイトで製品レビューのメインの考え方を要約することを目的とした、簡単ではないタスクである。
Heterogeneous Historical Review aware Review Summarization Model (HHRRS)を提案する。
我々は、レビュー感情分類と要約を共同で行うマルチタスクフレームワークを採用している。
論文 参考訳(メタデータ) (2023-01-27T12:32:55Z) - Factual and Informative Review Generation for Explainable Recommendation [41.403493319602816]
先行モデルの生成されたコンテンツは、しばしば事実の幻覚を含む。
提案手法は,検索したコンテンツと生成のためのパラメトリック知識の併用による最近の成功にインスパイアされ,パーソナライズされた検索機能を備えたジェネレータを提案する。
Yelp、TripAdvisor、Amazon Movie Reviewsのデータセットでの実験は、我々のモデルが既存のレビューをより確実に複雑にし、より多様性があり、人間の評価者によってより有益であると評価された説明を生成できることを示している。
論文 参考訳(メタデータ) (2022-09-12T16:46:47Z) - Dynamic Review-based Recommenders [1.5427245397603195]
我々は、レビュー生成の因果関係を尊重する評価予測を強化するために、レビューの既知の力を活用している。
我々の表現は時間間隔で認識されるので、力学の連続した時間表現が得られる。
論文 参考訳(メタデータ) (2021-10-27T20:17:47Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
本稿では、レビューに基づく項目推薦のための感性認識型インタラクティブフュージョンネットワーク(SIFN)を提案する。
まず、BERTを介してユーザ/イテムレビューをエンコードし、各レビューのセマンティックな特徴を抽出する軽量な感情学習者を提案する。
そこで我々は,感情学習者が明示的な感情ラベルを用いて感情認識特徴を抽出するための感情予測タスクを提案する。
論文 参考訳(メタデータ) (2021-08-18T08:04:38Z) - Evaluations and Methods for Explanation through Robustness Analysis [117.7235152610957]
分析による特徴に基づく説明の新たな評価基準を確立する。
我々は、緩やかに必要であり、予測に十分である新しい説明を得る。
我々は、現在の予測をターゲットクラスに移動させる一連の特徴を抽出するために、説明を拡張します。
論文 参考訳(メタデータ) (2020-05-31T05:52:05Z) - How Useful are Reviews for Recommendation? A Critical Review and
Potential Improvements [8.471274313213092]
本稿では,レビューテキストを用いてレコメンデーションシステムの改善を目指す,新たな作業体系について検討する。
実験条件やデータ前処理に変化はあるものの, 論文間で結果がコピーされていることから, 報告結果にいくつかの相違点がみられた。
さらなる調査では、リコメンデーションのためのユーザレビューの"重要"に関して、はるかに大きな問題に関する議論が求められている。
論文 参考訳(メタデータ) (2020-05-25T16:30:05Z) - Context-aware Helpfulness Prediction for Online Product Reviews [34.47368084659301]
本稿では,レビューの有用性を評価するニューラルディープ・ラーニング・モデルを提案する。
このモデルは畳み込みニューラルネットワーク(CNN)とコンテキスト認識符号化機構に基づいている。
我々は、人間の注釈付きデータセット上でモデルを検証し、その結果、既存のモデルよりも有益性予測に優れていたことを示す。
論文 参考訳(メタデータ) (2020-04-27T18:19:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。